文章目录
Abstract
在本文中,我们介绍了一个两玩家零和框架,介于一个可训练的求解器(Solver)和一个数据生成器(Data Generator)之间,以提高基于深度学习的旅行商问题(TSP)求解器的泛化能力。我们的两玩家框架基于策略空间响应Oracle(PSRO)方法,输出一系列最佳响应求解器,我们可以混合这些求解器,输出一个综合模型,该模型在对抗生成器时实现最小的可利用性,从而在不同的TSP任务上实现最泛化的绩效。我们在不同类型和规模的各种TSP实例上进行实验。结果表明,即使在求解器从未遇到过的任务上,我们的求解器也实现了最先进的性能,而其他基于深度学习的求解器由于过拟合,性能急剧下降。为了演示我们框架的原理,我们研究了所提出的两玩家游戏的学习结果,并证明求解器群体的可利用性在训练期间降低,并且最终逼近了与生成器一起的纳什均衡。
1 INTRODUCTION
由于深度学习能够从数以百万计的问题实例中训练并捕捉到复杂的改进启发式方法,它在解决组合优化问题上最近引起了极大的关注(Khalil等人,2017年)。此外,由于神经网络在前向计算上的高效性,基于深度学习的技术在处理大规模问题时,与传统方法相比尤其显得高效。因此,研究如何先在离线环境下训练基于深度学习的求解器,随后再在线环境下部署这些求解器,是一个充满希望的研究方向。
求解器的泛化能力指的是它在各种不同数据分布上的表现