1-组合优化图神经网络的退火机器辅助学习(arxiv 25)(完)

Second Workshop on Machine Learning with New Compute Paradigms at NeurIPS 2024(MLNCP 2024).

Abstract

尽管退火机(AM)在解决复杂组合优化问题方面展现出了越来越强的能力,成为未来全量子解决方案预期进展的一个更直接的替代方案,但它仍然存在可扩展性的限制。与此同时,图神经网络(GNN)最近已被应用于解决组合优化问题,并且由于其分布式特性,展现出了具有竞争力的结果和潜在的高可扩展性。我们提出了一种融合方法,旨在保留退火机的准确性和图神经网络的表示灵活性及可扩展性。我们的模型考虑了一个压缩步骤,随后是一个监督式交互步骤,在此步骤中,从退火机获得的部分解用于指导局部图神经网络,从而获取节点特征表示,并将这些表示组合起来,以初始化一个额外的基于图神经网络的求解器,该求解器用于处理原始图的目标问题。直观上,退火机可以通过将其知识融入图神经网络,间接地解决组合优化问题。在典型优化问题上的实验表明,这一设想是可行的,实际上使退火机能够解决超出其原始限制规模的问题。

1 Introduction

基于图的方法是学习组合优化求解器的最主流技术之一,其分布式特性使它们能够扩展到数百万个节点[33, 19]。然而,它们的概率性质(为决

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

太极生两鱼

要天天开心哦!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值