Matplotlib-Python

本文详细介绍了使用Matplotlib在Python中创建二维折线图,包括设置图片大小、保存图片、调整坐标轴区间、刻度、颜色、宽度、图例、注解、透明度、散点图、柱状图、等高线图、3D数据可视化以及在同一图中嵌套多个子图的方法。还涵盖了坐标轴原点移动、图例命名和标签定制等内容。

二维折线图

import matplotlib.pyplot as plt

x = range(2,26,2)
y = [12,13,213,23,123,12,23,123,12,12,23,13]
plt.plot(x,y)  #传入数据,画折线图
plt.show()

设置图片大小、保存

import matplotlib.pyplot as plt

x = range(2,26,2)
y = [12,13,21,23,12,12,23,13,12,12,23,13]

plt.figure(figsize=(20,8),dpi=80) #设置图片大小
plt.plot(x,y)

plt.savefig("/Users/air/Desktop/t1.png") #保存图片,要在 绘图之后,展示之前 保存
plt.show()

坐标轴其他设置

区间设置

#设置x轴和y轴的区间
plt.xlim((-1,2))
plt.ylim((1,4))

坐标轴标题设置

#坐标轴 标题
plt.xlabel("x")
plt.ylabel("y")	

坐标轴刻度

第一种

plt.xticks(range(2,25)) #设置x轴刻度
#range是【 )左闭右开 所以右区间加1,以保证能取到最大值
plt.yticks(range(min(y),max(y)+1)) 

第二种

new = np.linespace(-1,2,5)
plt.xticks(new)

自定义刻度 命名替换

在这里插入图片描述
自定义特定的几个点 给它命名

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(-1,1,50)
y1 = x*2
y2 = x**2
plt.plot(x,y1,color='red',linewidth=1.0,linestyle='--') 
plt.plot(x,y2,color='blue',linewidth=1.0,linestyle='-.')
newX = np.linspace(-1,2,3)
plt.xticks(newX)
plt.yticks([-0.3,1,1.5],['bad','normal','good']) #自定义3个点,纵坐标相应位置 命名
plt.show()

坐标轴 原点 移动

在这里插入图片描述

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(-1,1,50)
y1 = x*2
y2 = x**2
plt.plot(x,y1,color='red',linewidth=1.0,linestyle='--')
plt.plot(x,y2,color='blue',linewidth=1.0,linestyle='-.')
newX = np.linspace(-1,2,3)
plt.xticks(newX)
plt.yticks([0,1,1.5],['bad','normal','good'])

ax = plt.gca()# 取出当前坐标轴 框
ax.spines['right'].set_color('none') #右边框取消
ax.spines['top'].set_color('none') #上边框取消
ax.xaxis.set_ticks_position('bottom') # 将底部没取消的边框 设置为x轴
ax.yaxis.set_ticks_position('left') # 将左边没取消的边框 设置为y轴
ax.spines['bottom'].set_position(('data',0)) #x轴的纵坐标移动到0
ax.spines['left'].set_position(('data',0)) #y轴的横坐标移动到0

plt.show()

曲线的颜色、宽度设置

在这里插入图片描述

import matplotlib.pyplot as plt
import numpy as np

#-1到1 平分的50 个点
x = np.linspace(-1,1,50)
y1 = x*2
y2 = x**2
plt.plot(x,y1,color='red',linewidth=1.0,linestyle='--') #颜色 线宽 线风格
plt.plot(x,y2,color='blue',linewidth=1.0,linestyle='-.') #颜色 线宽 线风格

plt.show()

添加图例

在这里插入图片描述

#添加图例
l1, = plt.plot(x,y1,color='red',linewidth=1.0,linestyle='--')
l2, = plt.plot(x,y2,color='blue',linewidth=1.0,linestyle='-.')
plt.legend(handles=[l1,l2,],labels=['y1','y2'],loc='best') #图例

图片添加注解

在这里插入图片描述

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(-1,1,50)
y1 = x*2
y2 = x**2

#添加图例
l1, = plt.plot(x,y1,color='red',linewidth=1.0,linestyle='--')
l2, = plt.plot(x,y2,color='blue',linewidth=1.0,linestyle='-.')
plt.legend(handles=[l1,l2,],labels=['y1','y2'],loc='best') #图例

newX = np.linspace(-1,2,3)
plt.xticks(newX)
plt.yticks([0,1,1.5],['bad','normal','good'])
ax = plt.gca()# 取出当前坐标轴 框
ax.spines['right'].set_color('none') #右边框取消
ax.spines['top'].set_color('none') #上边框取消
ax.xaxis.set_ticks_position('bottom') # 将底部没取消的边框 设置为x轴
ax.yaxis.set_ticks_position('left') # 将左边没取消的边框 设置为y轴
ax.spines['bottom'].set_position(('data',0)) #x轴的纵坐标移动到0
ax.spines['left'].set_position(('data',0)) #y轴的横坐标移动到0
-----------------------------------------------------
x0 = 1
y0 = x0*2
#画一个点,参数:大小、颜色
plt.scatter(x0,y0,s=50,color='b')
#(x0,y0)(x0,0)两个点 连成虚线 线宽lw
plt.plot([x0,x0],[y0,0],'k--',lw=2.5)
#注解1,参数:名称、在哪个点加注释,相对位置、大小,箭头样式弧度等
plt.annotate(r'2x',xy=(x0,y0),xycoords='data',xytext=(+30,-30),textcoords='offset points',
             fontsize=16,arrowprops=dict(arrowstyle='->',connectionstyle='arc3,rad=.2'))
#注解2
plt.text(0.2,-1,r'This is banana',fontdict={'size':16,'color':'r'})
-----------------------------------------------------

plt.show()

处理被挡住的数据 透明

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(-1,1,50)
y1 = x*2
y2 = x**2

#添加图例
l1, = plt.plot(x,y1,color='red',linewidth=10.0,linestyle='--')
l2, = plt.plot(x,y2,color='blue',linewidth=1.0,linestyle='-.')
plt.legend(handles=[l1,l2,],labels=['y1','y2'],loc='best') #图例

newX = np.linspace(-1,2,3)
plt.xticks(newX)
plt.yticks([0,1,1.5],['bad','normal','good'])
ax = plt.gca()# 取出当前坐标轴 框
ax.spines['right'].set_color('none') #右边框取消
ax.spines['top'].set_color('none') #上边框取消
ax.xaxis.set_ticks_position('bottom') # 将底部没取消的边框 设置为x轴
ax.yaxis.set_ticks_position('left') # 将左边没取消的边框 设置为y轴
ax.spines['bottom'].set_position(('data',0)) #x轴的纵坐标移动到0
ax.spines['left'].set_position(('data',0)) #y轴的横坐标移动到0
————————————————————————————————————————————————————
for label in ax.get_xticklabels() + ax.get_yticklabels():
    label.set_fontsize(12)
    label.set_bbox(dict(facecolor='gray',edgecolor='None',alpha=0.1))#alpha为背景透明度
——————————————————————————————————————————————————————————————
plt.show()

在这里插入图片描述

散点图

import matplotlib.pyplot as plt
import numpy as np

n = 1024 #1024个点
X = np.random.normal(0,1,n) #随机生成n个 平均数为0,方差为1 数
Y = np.random.normal(0,1,n) #随机生成n个 平均数为0,方差为1 数
T = np.arctan2(Y,X) #数据点的颜色
#s为大小,c为颜色,alpha 为透明度
plt.scatter(X,Y,s=75,c=T,alpha=0.5)#生成散点图
plt.xlim((-1.5,1.5))
plt.ylim((-1.5,1.5))
plt.show()

在这里插入图片描述

柱状图

在这里插入图片描述

import matplotlib.pyplot as plt
import numpy as np

n = 12
X = np.arange(n) #生成【0 1 2 3】
Y1 = (1-X/float(n)) * np.random.uniform(0.5,1.0,n)
Y2 = (1-X/float(n)) * np.random.uniform(0.5,1.0,n)

plt.bar(X,+Y1,facecolor='#9999ff',edgecolor='white') #向上柱状图
plt.bar(X,-Y2,facecolor='#ff9999',edgecolor='white') #向下柱状图

#每个柱状都加上数据
for x,y in zip(X,Y1): #zip:把X和Y1的值分别传给x,y
    plt.text(x,y,'%.2f' % y,ha='center',va='bottom') #前两个xy不是数据,而是数据在柱状图上的相对位置
for x,y in zip(X,Y2): #zip:把X和Y2的值分别传给x,y
    plt.text(x,-y-0.095,'%.2f' % y,ha='center',va='top') #前两个xy不是数据,而是数据在柱状图上的相对位置

plt.xlim(-.5,n)
plt.xticks(()) #X坐标轴数据全部隐藏
plt.ylim(-1.25,1.25)
plt.yticks(()) #Y坐标轴数据全部隐藏
plt.show()

等高线图

在这里插入图片描述

import matplotlib.pyplot as plt
import numpy as np

# 计算高度
def f(x,y):
    return (1 - x/2 + x**5 + y**3) * np.exp(-x**2 - y**2)

n = 256
x = np.linspace(-3,3,n)
y = np.linspace(-3,3,n)
X,Y = np.meshgrid(x,y) #设置网格
# 等高线颜色 参数 x y z(高度)
plt.contourf(X,Y,f(X,Y),8,alpha=0.75,cmap=plt.cm.hot)
# 画等高线的线
C = plt.contour(X,Y,f(X,Y),8,colors='black',linewidth=.5)
# 添加数值
plt.clabel(C,inline=True,fontsize=10)

plt.xticks(()) #X坐标轴数据全部隐藏
plt.yticks(()) #Y坐标轴数据全部隐藏
plt.show()

3D数据

在这里插入图片描述

import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure()
ax = Axes3D(fig)
X = np.arange(-4,4,0.25)
Y = np.arange(-4,4,0.25)
X,Y = np.meshgrid(X,Y)
R = np.sqrt(X**2+Y**2)
Z = np.sin(R)
# 三个参数 行列跨度 cmap:彩虹颜色
ax.plot_surface(X,Y,Z,rstride=1,cstride=1,cmap=plt.get_cmap('rainbow'))
#zdir:等高线从哪个方向的投影,offset:将数据投影在z=-2的平面上
ax.contourf(X,Y,Z,zdir='z',offset=-2,cmap='rainbow')
ax.set_zlim(-2,2) #3d数据从z=[-2,2]的范围投影
plt.show()

一个图中显示多个小图

在这里插入图片描述

import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D

plt.figure() #生成一个图框架
plt.subplot(2,2,1)#将 figure 分成 2 行 2 列,并且在第 1 个位置 plot
plt.plot([0,1],[0,1]) #在第一行第一个位置画

plt.subplot(2,2,2)
plt.plot([0,1],[0,1])

plt.subplot(2,2,3)
plt.plot([0,1],[0,1])

plt.subplot(2,2,4)
plt.plot([0,1],[0,1])

plt.show()

在这里插入图片描述

import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D

plt.figure() #生成一个图框架
plt.subplot(2,1,1)#将 figure 分成 2 行 1 列,并且在第 1 个位置 plot
plt.plot([0,1],[0,1]) #在第一行第一个位置画

plt.subplot(2,3,4)
plt.plot([0,1],[0,1])

plt.subplot(2,3,5)
plt.plot([0,1],[0,1])

plt.subplot(2,3,6)
plt.plot([0,1],[0,1])

plt.show()

在这里插入图片描述

import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.gridspec as gridspec

plt.figure()
# 将整个图分为3行3列,从(0,0)开始,占3列,占1行
ax1 = plt.subplot2grid((3,3),(0,0),colspan=3,rowspan=1)
ax1.plot([1,2],[1,2])
ax1.set_title('ax1_title')#设置第一幅图的标题

ax2 = plt.subplot2grid((3,3),(1,0),colspan=2,rowspan=1)
ax2.plot([1,2],[1,2])
ax2.set_title('ax2_title')

ax3 = plt.subplot2grid((3,3),(2,0),colspan=1,rowspan=1)
ax3.plot([1,2],[1,2])
ax3.set_title('ax3_title')

ax4 = plt.subplot2grid((3,3),(2,1),colspan=1,rowspan=1)
ax4.plot([1,2],[1,2])
ax4.set_title('ax3_title')

ax5 = plt.subplot2grid((3,3),(1,2),colspan=1,rowspan=2)
ax5.plot([1,2],[1,2])
ax5.set_title('ax5_title')

plt.show()

图中图

在这里插入图片描述

import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.gridspec as gridspec

fig = plt.figure()
x = [1,2,3,4]
y = [1,2,3,4]

left,bottom,width,height = 0.1,0.1,0.8,0.8
ax1 = fig.add_axes([left,bottom,width,height])# 相对位置百分比
ax1.plot(x,y,'r')
ax1.set_xlabel('x')
ax1.set_ylabel('y')
ax1.set_title('title')

left,bottom,width,height = 0.2,0.6,0.25,0.25
ax2 = fig.add_axes([left,bottom,width,height])# 相对位置百分比
ax2.plot(x,y,'b')
ax2.set_xlabel('x')
ax2.set_ylabel('y')
ax2.set_title('title 1')

plt.show()

次坐标轴

在这里插入图片描述

import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.gridspec as gridspec
x = np.arange(0,10,0.1)
y1 = 0.05* x**2
y2 = -1 * y1

fig,ax1 = plt.subplots()
ax2 = ax1.twinx()
ax1.plot(x,y1,'g--')
ax2.plot(x,y2,'b--')

ax1.set_xlabel('X data')
ax1.set_ylabel('Y1',color='g')
ax2.set_ylabel('Y2',color='b')

plt.show()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值