【人工智能面经第二期:机器学习框架与深度学习理论基础面试问答】

🚀 作者 :“码上有前”
🚀 文章简介 :人工智能面经
🚀 欢迎小伙伴们 点赞👍、收藏⭐、留言💬
请添加图片描述在这里插入图片描述

机器学习框架与深度学习理论基础面试问答

摘要

本文围绕机器学习框架(sklearn、xgboost )与深度学习理论基础(多层感知机、CNN、GRU、RNN、LSTM )展开面试高频提问,涵盖原理、应用、对比等维度,助力读者梳理知识体系,应对人工智能与计算机视觉岗位面试,明晰不同工具和模型在实际场景的价值与区别 。

目录

  1. 机器学习框架学习 - sklearn 相关问题
  2. 机器学习框架学习 - xgboost 相关问题
  3. 深度学习理论基础 - 多层感知机相关问题
  4. 深度学习理论基础 - CNN 网络相关问题
  5. 深度学习理论基础 - GRU 网络相关问题
  6. 深度学习理论基础 - RNN 网络相关问题
  7. 深度学习理论基础 - LSTM 网络相关问题

一、机器学习框架学习 - sklearn 相关问题

问题1:sklearn 中常用的数据集加载函数有哪些?在计算机视觉任务里,如何结合 sklearn 对自定义图像数据集进行预处理和简单模型训练验证?

答案:常用数据集加载函数如 load_iris(鸢尾花数据集 )、load_digits(手写数字数据集 )等。处理自定义图像数据集时,先通过 os 等库读取图像路径和标签,用 PILOpenCV 加载图像并转换为数组,借助 sklearnpreprocessing 模块(如 StandardScaler 标准化 )预处理图像特征,再用 sklearntrain_test_split 划分数据集,选择简单模型(如 SVM决策树 ),通过 fitpredict 等方法训练验证,不过 sklearn 原生对图像复杂特征处理能力有限,常作为初步探索工具 。

问题2:sklearn 的管道(Pipeline)机制有什么作用?在计算机视觉的特征工程与模型训练流程中,如何利用 Pipeline 优化工作?

答案:Pipeline 可将数据预处理、特征提取/转换、模型训练等步骤串联,形成一个整体流程,方便复用、避免数据泄漏(如交叉验证时 )。在计算机视觉流程中,比如先对图像用 PCA 降维(预处理 ),再用 SVM 分类,可构建 Pipeline([('pca', PCA()), ('svm', SVC())]) ,这样在交叉验证、新数据预测时,流程自动执行,简化代码,保证各步骤在不同数据集划分下执行逻辑一致,提升开发效率 。

问题3:sklearn 实现的随机森林与 x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码上有前

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值