🚀 作者 :“码上有前”
🚀 文章简介 :人工智能面经
🚀 欢迎小伙伴们 点赞👍、收藏⭐、留言💬
机器学习框架与深度学习理论基础面试问答
摘要
本文围绕机器学习框架(sklearn、xgboost )与深度学习理论基础(多层感知机、CNN、GRU、RNN、LSTM )展开面试高频提问,涵盖原理、应用、对比等维度,助力读者梳理知识体系,应对人工智能与计算机视觉岗位面试,明晰不同工具和模型在实际场景的价值与区别 。
目录
- 机器学习框架学习 - sklearn 相关问题
- 机器学习框架学习 - xgboost 相关问题
- 深度学习理论基础 - 多层感知机相关问题
- 深度学习理论基础 - CNN 网络相关问题
- 深度学习理论基础 - GRU 网络相关问题
- 深度学习理论基础 - RNN 网络相关问题
- 深度学习理论基础 - LSTM 网络相关问题
一、机器学习框架学习 - sklearn 相关问题
问题1:sklearn 中常用的数据集加载函数有哪些?在计算机视觉任务里,如何结合 sklearn 对自定义图像数据集进行预处理和简单模型训练验证?
答案:常用数据集加载函数如 load_iris
(鸢尾花数据集 )、load_digits
(手写数字数据集 )等。处理自定义图像数据集时,先通过 os
等库读取图像路径和标签,用 PIL
或 OpenCV
加载图像并转换为数组,借助 sklearn
的 preprocessing
模块(如 StandardScaler
标准化 )预处理图像特征,再用 sklearn
的 train_test_split
划分数据集,选择简单模型(如 SVM
、决策树
),通过 fit
、predict
等方法训练验证,不过 sklearn
原生对图像复杂特征处理能力有限,常作为初步探索工具 。
问题2:sklearn 的管道(Pipeline)机制有什么作用?在计算机视觉的特征工程与模型训练流程中,如何利用 Pipeline 优化工作?
答案:Pipeline 可将数据预处理、特征提取/转换、模型训练等步骤串联,形成一个整体流程,方便复用、避免数据泄漏(如交叉验证时 )。在计算机视觉流程中,比如先对图像用 PCA
降维(预处理 ),再用 SVM
分类,可构建 Pipeline([('pca', PCA()), ('svm', SVC())])
,这样在交叉验证、新数据预测时,流程自动执行,简化代码,保证各步骤在不同数据集划分下执行逻辑一致,提升开发效率 。