
Python
文章平均质量分 89
python语言是世界上最好的语言
码上有前
啦啦啦啦啦
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【进阶激活函数解析:Softplus、ELU、SELU、Swish与GELU的原理与应用】
随着深度学习的发展,激活函数从早期的经典形式不断演进,衍生出更适应复杂网络架构的进阶版本。本文聚焦Softplus、ELU、SELU、Swish和GELU五种现代激活函数,深入剖析其数学原理、梯度特性、优缺点及适用场景。通过公式推导、代码实现和可视化对比,揭示这些函数在解决梯度消失、提升训练稳定性等方面的设计巧思,为神经网络架构设计提供进阶选型参考。原创 2025-08-23 21:28:45 · 566 阅读 · 0 评论 -
【深度解析:五类经典激活函数的原理、特性与应用场景】
激活函数是神经网络的“神经末梢”,赋予模型非线性表达能力。本文聚焦线性函数(Linear Function)、ReLU、Leaky ReLU、Sigmoid、Tanh五类核心激活函数,从数学原理、计算逻辑、优缺点到实际应用场景展开深度剖析。通过公式推导、代码示例、对比表格多维呈现,帮助读者理解不同激活函数的适用边界,为神经网络架构设计提供清晰的选型参考。原创 2025-08-23 20:52:39 · 760 阅读 · 0 评论 -
【提示工程:让大模型“听话”的核心技术——从原理到面试全解析】
本文以对话式视角拆解提示工程,先讲清其“帮大模型理解需求”的核心原理,再用流程图展示“需求分析→提示设计→优化迭代”的完整流程,拆解“指令、上下文、示例”等关键组成部分。通过表格对比不同提示类型的效果,结合代码示例说明在文本生成、代码辅助等场景的应用,最后提炼面试高频考点,帮你既懂“怎么用”,又能答“为什么”。原创 2025-08-19 11:22:27 · 938 阅读 · 0 评论 -
【检索增强生成(RAG):原理、架构与面试核心解析】
本文系统梳理检索增强生成(Retrieval-Augmented Generation, RAG)的发展历程,从早期概念提出到多模态融合的技术演进;深入拆解其“检索-增强”双阶段工作原理,结合流程图直观呈现核心逻辑;详细剖析检索系统、知识库、LLM交互层等关键组成部分及技术细节;并针对面试高频场景,提炼基础概念、技术优化、实践选型等核心考点,辅以代码示例(向量检索实现)与对比图表,为学习者与求职者提供全面的RAG知识体系。原创 2025-08-19 02:19:05 · 1167 阅读 · 0 评论 -
【大模型:从起源到应用的全方位解析】
本文全面阐述大模型的起源与发展脉络,从早期模型的探索到现代超大规模模型的崛起;深入剖析其工作原理,包括基于Transformer的架构核心与自注意力机制;详细讲解工作流程,涵盖训练与推理阶段;拆解组成部分,如模型架构、训练数据等;提炼核心内容,像预训练、微调等关键技术;同时梳理大模型相关的常见面试要点,为学习者和求职者提供系统且深入的大模型知识参考。原创 2025-08-18 22:38:59 · 727 阅读 · 0 评论 -
【大模型前沿算法探秘:MoE、RLHF、DPO、LoRA/QLoRA 原理与实践】
本文聚焦大模型领域的前沿算法,包括混合专家模型(MoE)、基于人类反馈的强化学习(RLHF)、直接偏好优化(DPO)以及低秩适配(LoRA)与量化低秩适配(QLoRA)。从算法原理出发,深入剖析各技术的核心思想、数学基础与创新点,结合实际场景,通过代码示例、图表等形式,详细阐述它们在大模型训练、优化、高效微调及部署过程中的应用,为大模型的研究者与开发者提供全面且深入的技术参考,助力理解与掌握这些推动大模型发展的关键技术。原创 2025-08-18 22:27:50 · 980 阅读 · 0 评论 -
【知识蒸馏:让小模型拥有大模型能力——原理、实践与代码解析】
随着深度学习模型在计算机视觉、自然语言处理等领域的性能不断突破,“大参数量、高计算成本”与“边缘设备部署、实时推理需求”的矛盾日益突出。知识蒸馏作为模型轻量化的核心技术之一,通过“教师模型(复杂、高精度)→学生模型(简单、高效)”的知识迁移,在大幅降低模型参数量与计算量的同时,保留90%以上的原模型性能。本文从知识蒸馏的核心原理出发,拆解“温度软化”“蒸馏损失”等关键技术,以CIFAR-10图像分类任务为案例,通过PyTorch实现完整蒸馏流程(ResNet152作为教师模型,MobileNetV2作为学生原创 2025-08-17 00:38:12 · 977 阅读 · 0 评论 -
【AI模型工程化落地指南:从ONNX标准化、TensorRT加速到Kubernetes部署】
在AI技术从实验室走向产业应用的过程中,“模型落地效率”与“服务稳定性”成为核心瓶颈——训练好的模型常因框架依赖难以跨端部署,原生推理性能无法满足实时业务需求,单机部署又难以应对流量波动。本文以“标准化-加速-规模化”为核心逻辑,系统讲解ONNX(跨框架模型中间表示)、TensorRT(GPU推理加速)、Kubernetes(K8s,容器化编排)三大技术的原理与实践,通过可复现的代码实例(ResNet-50模型全链路操作)、可视化图表(性能对比、部署架构),验证技术效果:经TensorRT优化后,模型推理延原创 2025-08-17 00:11:03 · 766 阅读 · 0 评论 -
【人工智能面经第六期:梯度问题、过拟合与收敛加速】
深度神经网络在近年来取得了显著的成功,但在训练过程中常面临梯度消失、梯度爆炸、过拟合以及收敛速度慢等关键挑战。本文系统阐述了这些问题的成因,并详细介绍了对应的解决方法,包括权重初始化、批量归一化、残差连接、正则化、Dropout、优化器选择等。此外,本文提供了基于PyTorch框架的示例代码,展示了如何在实际应用中集成这些技术,以提高深度神经网络的训练稳定性、泛化能力和效率。原创 2025-07-18 00:34:02 · 945 阅读 · 0 评论 -
【数据结构与算法第五期:滑动窗口原理、方法与实战应用】
本文系统剖析滑动窗口算法,从原理出发,结合 Python 代码示例,讲解其基本方法、前置知识,梳理解法技巧与适配场景。通过经典 LeetCode 题目(长度最小的子数组、无重复字符的最长子串等 ),对比不同算法,明晰滑动窗口的优势与应用边界,助力读者精准掌握该算法,提升算法解题与工程实践能力。原创 2025-07-14 21:20:09 · 993 阅读 · 0 评论 -
【数据结构与算法第三期:双指针算法全解析:原理、方法与应用场景】
本文深度剖析双指针算法,从原理出发,结合 Python 代码示例,讲解其基本方法、前置知识,梳理解法技巧与适配场景。通过经典案例对比不同算法,助力读者精准掌握双指针算法,提升算法解题能力与工程实践应用水平。原创 2025-07-14 17:03:43 · 703 阅读 · 0 评论 -
【数据结构与算法第二期:双指针算法经典题型深度解析:思路、解法与对比】
本文聚焦 LeetCode 中 5 道双指针典型题目(验证回文串、判断子序列、两数之和 II - 输入有序数组、盛最多水的容器、三数之和 ),详细剖析双指针解题思路、实现代码,梳理技巧要点。同时补充其他解法的完整代码,从时间复杂度、空间复杂度、适用场景多维度对比双指针法与其他方法,助力读者透彻理解双指针算法的应用逻辑与优势边界 。原创 2025-07-14 16:41:54 · 413 阅读 · 0 评论 -
【数据结构与算法第一期:数组(列表)核心操作与原地修改技术详解】
数组(列表)是数据结构中最基础且应用最广泛的线性结构之一,其连续的内存存储特性使其具备高效的访问性能。本文聚焦数组的常用操作方法与原地修改技术,系统梳理了增删改查等基础操作的实现逻辑,并通过实例解析原地修改的核心技巧(如双指针法、反向遍历等)。掌握这些内容对于解决算法问题中的数组操作场景至关重要,能显著提升代码的时间与空间效率。原地修改指不创建新数组,直接在原数组上通过覆盖、交换等操作修改元素,从而实现目标功能。其核心优势是节省空间(空间复杂度O(1)),这在算法题中是常见的优化要求。原创 2025-07-13 17:07:20 · 978 阅读 · 0 评论 -
【人工智能面经第五期:模型训练与优化核心面试深度问答】
围绕模型训练与优化的训练技巧(正则化、迁移学习 )和数据工程(数据增强、标注质量 )展开,通过20个关键问题,解析正则化协同策略、迁移学习适配场景、数据增强实践等核心要点,助力读者掌握人工智能与计算机视觉岗位面试中模型训练优化的知识体系,明晰技术原理与实际应用的关联。原创 2025-07-10 19:37:28 · 1045 阅读 · 0 评论 -
【人工智能面经第四期:人工智能与深度学习基础理论深挖面试问答】
本文聚焦人工智能与深度学习基础理论中的数学基础(优化理论、概率论与信息论 )和经典模型对比(CNN变体、RNN与Transformer ),通过针对性提问与解答,深入剖析各知识点的原理、应用及差异,助力读者夯实基础理论知识,适配人工智能与计算机视觉岗位面试,明晰不同理论和模型在实际技术场景中的价值与区别 。原创 2025-07-10 19:27:13 · 1122 阅读 · 0 评论 -
【人工智能面经第三期:自然语言处理核心任务面试问答解析】
本文围绕自然语言处理(NLP)的八大核心任务(句法语义分析、信息抽取、文本挖掘、信息检索、机器翻译、问答系统、对话系统、阅读理解 )展开深度提问与解答。从任务原理、关键技术、应用场景及难点突破等角度,剖析各NLP任务的核心要点,助力读者构建NLP知识体系,适配人工智能与计算机视觉岗位中涉及NLP能力考查的面试场景,明晰不同NLP任务的价值与实现逻辑。原创 2025-07-10 00:57:45 · 962 阅读 · 0 评论 -
【人工智能面经第二期:机器学习框架与深度学习理论基础面试问答】
本文围绕机器学习框架(sklearn、xgboost )与深度学习理论基础(多层感知机、CNN、GRU、RNN、LSTM )展开面试高频提问,涵盖原理、应用、对比等维度,助力读者梳理知识体系,应对人工智能与计算机视觉岗位面试,明晰不同工具和模型在实际场景的价值与区别 。原创 2025-07-10 00:36:53 · 597 阅读 · 0 评论 -
【人工智能面经第一期:机器学习理论基础:监督、半监督与无监督学习深度问答】
本文聚焦机器学习理论基础中的监督学习、半监督学习和无监督学习三大类别,通过针对性提问与解答,深入剖析各类别下典型算法的原理、应用场景及特点,助力读者夯实机器学习知识体系,尤其适用于人工智能和计算机视觉岗位面试备考,明晰不同学习范式在实际技术应用中的价值与区别 。原创 2025-07-09 23:56:24 · 602 阅读 · 0 评论 -
【深度学习第六期深度学习中的归一化与正则化技术:原理、实践与应用】
本文深入探讨深度学习中批量归一化(BN)、层归一化(LN)、标准化以及正则化等关键技术。详细阐述它们的基本原理,包括如何调整数据分布、控制模型复杂度等;通过丰富的实例和对应代码,展示在不同网络架构中这些技术的具体实现方式,以及对模型训练和性能的影响;同时,对比分析各项技术的特点和适用场景,帮助读者理解在不同任务和数据条件下如何合理选择与应用。本文旨在帮助读者全面掌握这些技术,从而在深度学习项目中优化模型性能、提升泛化能力。原创 2025-07-08 11:59:22 · 1017 阅读 · 0 评论 -
【深度学习第五期深度解析Transformer:从原理到PyTorch实战】
本文围绕Transformer架构展开深入剖析,涵盖其核心组成部分,如Encoder-decoder结构、注意力机制(自注意力、多头注意力、soft - attention )、位置编码(绝对、相对、旋转位置编码 )、Layer Normalization及Attention中的mask等基础知识。详细讲解各模块的原理、意义与实现过程,并通过PyTorch代码实例演示Transformer的构建与应用,帮助读者透彻理解Transformer的设计思想,掌握其在深度学习任务中的实践方法,为自然语言处理、计算机原创 2025-07-07 11:44:23 · 1692 阅读 · 0 评论 -
【深度学习第四期:循环神经网络(RNN)深度解析与时序预测实战】
本文围绕循环神经网络(RNN)及其变体(LSTM、BiLSTM、GRU )展开,深入讲解 RNN 在时序数据处理中的原理与应用。涵盖 DNN 与 RNN 对比、RNN 网络结构、梯度问题,以及词嵌入(WordEmbedding、Word2Vec )、LSTM 门结构、GRU 优化等内容。结合风电功率预测等实际项目,通过 PyTorch 代码实例演示模型搭建与训练,帮助读者掌握 RNN 系列模型的设计思想与实践方法,应对时序预测、自然语言处理等任务。原创 2025-07-07 11:36:58 · 869 阅读 · 0 评论 -
【深度学习第三期:深度学习中多种卷积方式深度解析与实践】
本文聚焦深度学习领域中多样的卷积方式,涵盖三维卷积、反卷积(转置卷积)、空洞卷积(膨胀卷积)、可分离卷积、扁平卷积、分组卷积及混洗分组卷积。详细剖析每种卷积的原理、适用场景与优势,结合 PyTorch 代码实例演示其实现与应用,帮助读者理解不同卷积在特征提取、维度处理、计算效率等方面的特性,助力在模型设计中灵活选用合适卷积方式,优化网络性能。原创 2025-07-07 11:35:27 · 956 阅读 · 0 评论 -
【深度学习第二期:经典卷积神经网络解析与PyTorch实战】
本文围绕LeNet - 5、AlexNet、VggNet、GooLeNet、ResNet及MobileNet系列等经典卷积神经网络(CNN)展开。详细剖析各网络的核心结构(如卷积、池化、全连接、特殊模块等 )、设计思想(感受野、维度控制、残差连接等 ),并结合PyTorch框架进行代码实现。通过实例演示网络搭建、训练流程,帮助读者深入理解不同CNN的特点与优势,掌握在PyTorch中复现经典模型的方法,为深度学习模型开发与优化筑牢基础。原创 2025-07-07 11:32:12 · 942 阅读 · 0 评论 -
【深度学习第一期深度学习基础核心知识全解:从原理到实践】
本文围绕深度学习基础关键内容展开,涵盖全连接与链式求导法则、softmax与交叉熵、优化器与优化方法、欠拟合与过拟合等模块。详细解析各知识点的原理,通过丰富实例与Python代码实践,深入讲解全连接神经网络的前反向传播、softmax与交叉熵的关联、多种优化器(SGD、Adam等 )的实现,以及欠拟合与过拟合的应对策略,助力读者扎实掌握深度学习基础,为进阶学习筑牢根基。原创 2025-07-07 11:25:01 · 837 阅读 · 0 评论 -
【机器学习第十期机器学习进阶:半监督学习与概率图模型深度探索】
本文聚焦机器学习中的半监督学习与概率图模型两大重要领域。对半监督学习,深入讲解其利用未标记样本提升模型性能的核心思想,涵盖生成式方法、半监督SVM、图半监督学习、基于分歧的方法及半监督聚类等关键技术;针对概率图模型,剖析隐马尔可夫模型、马尔可夫随机场、条件随机场等经典模型的原理,以及学习与推断、近似推断、话题模型等内容。通过丰富实例与Python代码实践,帮助读者掌握半监督学习在数据利用上的优势,理解概率图模型的概率推理与建模逻辑,提升对复杂机器学习任务的实践能力。原创 2025-07-07 00:09:44 · 1036 阅读 · 0 评论 -
【机器学习第九期机器学习进阶:聚类与降维技术深度解析】
本文围绕机器学习中聚类与降维两大关键技术展开。对聚类,深入讲解聚类任务、性能度量、距离计算,以及原型聚类、密度聚类、层次聚类的原理与实现;针对降维与度量学习,剖析k近邻学习、低维嵌入、主成分分析(PCA)、核化线性降维、流形学习及度量学习的核心逻辑。通过丰富实例与Python代码实践,帮助读者掌握聚类算法的分类与应用场景,理解降维技术如何简化高维数据并保留关键信息,提升对机器学习中无监督学习任务的实践能力。原创 2025-07-06 23:51:06 · 927 阅读 · 0 评论 -
【机器学习第八期机器学习进阶:贝叶斯分类器与集成学习深度解析】
本文聚焦机器学习中的贝叶斯分类器与集成学习两大重要内容。对贝叶斯分类器,深入讲解贝叶斯决策论、极大似然估计、朴素贝叶斯、半朴素贝叶斯、贝叶斯网及EM算法的原理,剖析其在概率分类中的逻辑;针对集成学习,详细阐述个体与集成关系、Boosting、Bagging与随机森林、结合策略及多样性等关键要点。通过丰富实例与Python代码实践,帮助读者掌握贝叶斯分类器的概率推理与集成学习的模型融合技巧,理解不同算法在实际场景的应用方法与优势。原创 2025-07-06 22:05:10 · 791 阅读 · 0 评论 -
【机器学习第七期机器学习经典算法剖析:决策树与支持向量机深度解析】
本文聚焦机器学习中决策树与支持向量机两大经典算法,围绕决策树的连续值处理、缺失值应对、多变量拓展,以及支持向量机的间隔、对偶问题、核函数等核心内容展开。通过理论讲解、实例推导与Python代码实践,深入剖析算法原理与应用细节,帮助读者掌握决策树应对复杂数据场景的方法,理解支持向量机的数学本质与核技巧,提升机器学习算法的实践应用能力。原创 2025-07-06 17:49:45 · 578 阅读 · 0 评论 -
【TensorFlow第一期学习全攻略:从基础到实战的深度探索】
本文围绕TensorFlow的核心知识体系,从基础概念、环境搭建,到Keras 神经网络构建、数据处理、模型训练与评估,再深入模型调优、多任务实践(图像分类、文本分类等 )及生产环境部署展开。结合丰富代码实例,详细讲解TensorFlow各模块的使用方法,帮助读者系统掌握TensorFlow,从理论学习过渡到实际项目开发,覆盖从模型搭建到落地应用的完整流程。原创 2025-07-06 11:41:06 · 628 阅读 · 0 评论 -
【机器学习第六期机器学习关键术语深度解析:概念、原理与应用】
本文深入剖析机器学习中“归纳偏好、奥卡姆剃刀准则、连接主义、符号主义、统计主义、P=NP问题、交叉验证、比较检验”等关键术语。通过阐述各术语的核心概念,结合实际案例说明其在机器学习领域的原理与应用,帮助读者全面理解机器学习背后的理论基础与方法论,厘清不同思想流派和技术手段在模型构建、算法选择及问题求解中的作用。原创 2025-07-05 22:37:23 · 870 阅读 · 0 评论 -
【机器学习第五期:无监督学习与深度学习核心算法解析及实践】
本文围绕无监督学习(K-Means聚类、PCA )与深度学习(神经网络、CNN、RNN )的关键算法展开。详细阐释K - Means聚类的分组逻辑、PCA的降维原理,以及不同深度学习网络应对数据的特性。通过客户细分(K-Means )、数据可视化(PCA )、手写数字识别(神经网络、CNN )、文本情感分析(RNN )等实例,结合Python代码演示算法实现,帮助读者掌握无监督学习挖掘数据内在结构,以及深度学习处理复杂模式任务的方法,理解各算法适用场景与价值。原创 2025-07-05 17:47:59 · 886 阅读 · 0 评论 -
【机器学习第四期机器学习监督学习算法全解:原理、实例与代码实践】
本文聚焦机器学习中的监督学习算法,深入剖析线性回归、逻辑回归、支持向量机(SVM)、K近邻(KNN)、决策树、随机森林的核心原理。通过**汽车油耗预测(线性回归 )、疾病诊断(逻辑回归 )**、鸢尾花分类(SVM、KNN )、泰坦尼克生存预测(决策树、随机森林 )等实例,结合Python代码演示算法实现流程,从模型构建、训练到评估全方位讲解,助力读者掌握监督学习算法的实践应用,理解不同算法在解决回归、分类问题中的优势与适用场景。原创 2025-07-05 17:34:58 · 891 阅读 · 0 评论 -
【机器学习第三期机器学习任务全解析:从理论到实践的深度探索】
本文围绕常见机器学习任务(回归、分类、聚类、降维 )展开系统讲解。深入剖析各任务的核心逻辑,结合房价预测(回归 )、垃圾邮件检测(分类 )、客户细分(聚类 )、PCA主成分分析(降维 )等实例,通过Python代码演示任务实现流程。从数据准备、模型构建到结果评估,全方位展示机器学习在不同场景的应用方法,助力读者掌握机器学习任务的实践要点,理解其解决实际问题的价值。原创 2025-07-05 11:28:46 · 732 阅读 · 0 评论 -
【OpenCV第三期OpenCV 视频与图像高级应用实战:从处理到识别】
本文聚焦 OpenCV 在视频处理、目标跟踪、背景减除、人脸检测、物体识别、图像拼接及滤镜效果等方向的应用。通过原理讲解、完整代码示例与效果展示,帮助读者掌握 OpenCV 处理动态视频流、识别特定目标(人脸、物体 )、优化图像拼接及制作创意滤镜的方法。从基础视频操作到复杂计算机视觉任务,覆盖多场景实践,助力提升 OpenCV 工程化应用能力。原创 2025-07-04 11:43:24 · 703 阅读 · 0 评论 -
【OpenCV第二期OpenCV进阶图像处理:形态学、边缘与轮廓及直方图全解析】
本文聚焦 OpenCV 进阶图像处理技术,深入讲解图像形态学操作、边缘检测、轮廓检测及直方图分析。通过原理阐述、丰富代码示例与可视化展示,帮助读者掌握形态学变换(腐蚀、膨胀等)优化图像、边缘检测(Canny 等)提取关键轮廓、轮廓检测定位目标及直方图分析图像像素分布的方法。从基础理论到实战应用,适配计算机视觉学习者进阶需求,助力高效解决复杂图像处理任务。原创 2025-07-04 11:19:15 · 626 阅读 · 0 评论 -
【OpenCV第一期OpenCV 图像处理全解析:从入门到进阶实践】
本文围绕 OpenCV 核心知识体系,依次讲解入门实例、基础模块、图像处理基础流程(含基本操作、算术运算、阈值处理、平滑处理、形态学操作 )。通过原理阐释、丰富代码示例与可视化演示,帮助读者快速掌握 OpenCV 在图像处理中的关键用法,从加载显示图像到复杂滤波、形态学变换,逐步构建 OpenCV 实践能力,适配计算机视觉初学者入门与实践需求,助力高效开展图像处理项目。原创 2025-07-04 11:06:39 · 937 阅读 · 0 评论 -
【SKlearn第二期深入Sklearn进阶模块:Pipeline、自定义与实战应用全解析】
本文聚焦Sklearn进阶内容,系统讲解Pipeline工作流搭建、自定义模型与功能扩展、模型保存加载技巧,结合房价预测等应用案例深度实践。通过原理剖析、代码示例与场景演示,帮助读者掌握Sklearn复杂流程设计,解决实际项目中数据预处理串联、个性化模型开发、模型部署复用等问题,从进阶技巧到实战落地,全方位提升Sklearn应用能力。原创 2025-07-04 08:46:37 · 1084 阅读 · 0 评论 -
【Sklearn第一期深入浅出探索 Scikit-learn:从入门到实践的完整指南】
本文围绕 Scikit - learn(简称 Sklearn )展开系统教学,依次介绍其简介、安装流程、基础概念,深入讲解数据预处理的关键步骤,详细剖析多种机器学习模型,并阐述模型评估与调优的方法。通过丰富的代码示例、原理阐释与场景应用,帮助读者快速搭建 Sklearn 知识体系,掌握从数据准备到模型部署的全流程,适配机器学习初学者入门与进阶需求,助力高效开展机器学习项目实践。原创 2025-07-04 08:25:04 · 795 阅读 · 0 评论 -
【机器学习第一期机器学习入门之旅:从概念到实践的完整探索】
本文围绕机器学习教程核心内容展开,依次讲解机器学习简介、工作原理、基础概念,介绍 Python 入门机器学习的路径,深入剖析常见算法。通过理论阐释、代码示例与场景应用,帮助读者搭建机器学习知识体系,掌握从数据准备到模型构建、评估的完整流程,适配零基础学习者,助力快速开启机器学习实践之旅,用 Python 落地简单机器学习任务 。原创 2025-07-04 07:02:40 · 894 阅读 · 0 评论 -
【Pytorch第二期:深入探索 PyTorch 核心组件:从模型到数据处理】
本文聚焦 PyTorch 关键模块,依次讲解线性回归实现、卷积神经网络(CNN)、循环神经网络(RNN)的原理与搭建,以及数据集、数据转换的使用,还有 `torch` 基础和 `torch.nn` 模块剖析。通过理论阐释、代码示例与场景应用,帮助读者掌握 PyTorch 核心功能,从模型构建到数据流程全方位实践,适配深度学习学习者进阶需求,助力高效开发各类神经网络模型 。原创 2025-07-03 23:38:02 · 892 阅读 · 0 评论