- 博客(10)
- 收藏
- 关注
原创 李宏毅机器学习笔记Day8——卷积神经网络(CNN)
在DNN中,每一层根据上一层的信息进行识别 CNN:简化fully connected Network 为什么CNN可以用于图像识别? 1.一个neuron只需要看图的一小部分,即只需要连接一小部分。 2.一样的pattern可以共用同一组参数,减少参数的量。 整个CNN架构 Convolution 黑白图片 把filer1放在左上角,做内积,根据stride移动stride =1,每次移动一格,得到44的Matrix,可以看到最大值在左上角和左下角,表示filter1要侦测的pattern出现在image
2022-05-28 17:25:55
339
原创 李宏毅机器学习笔记Day7——批次标准化
批次标准化(Batch Normalization)也是训练神经网络的一个tip。 复杂的error surface:不同的dimension的数值范围相差很大,要将这些数值范围变得相同,将error surface变得比较简单。 feature normalization 在深度学习中,对z也要做feature normalization,当network很大时,可以考虑为一个batch,只在一个batch做feature normalization。 Batch Normalization testin
2022-05-25 16:36:19
264
原创 李宏毅机器学习笔记Day5
Optimization 失败:loss不够小,gradient接近0,但不是local minima(局部最小值),或者是saddle point(鞍点),卡在critical point。
2022-05-25 11:35:57
172
原创 李宏毅机器学习笔记Day4——反向传播
1.为什么要用反向传播 因为梯度是上百万维vectors的,要有效地计算出来。 2.Chain Rule 引入中间参数求微分的方法 3.反向传播 对某一笔data计算它的cost Cn,合起来可以得到
2022-05-22 21:45:45
362
原创 李宏毅机器学习笔记Day4——深度学习简介
深度学习的步骤 三个步骤与机器学习一样。 Step1 neural network 可以得到function set。 我们将它们看作很多layers,deep就是很多hidden layers。
2022-05-21 17:01:16
224
原创 李宏毅机器学习笔记Day3——梯度下降
1.梯度下降的主要步骤 2.梯度下降的tips (1)调learning rate 我们可以看到Loss的变化 调learning rate的情形与方法 Adagrad:每个参数分开考虑,其中要考虑root mean s
2022-05-20 22:57:10
306
原创 李宏毅机器学习笔记Day3——误差
上节课讲到,越复杂的medel不一定有越小的误差,这节课将学习误差来自什么地方。 误差来自于bias和variance 去期望来估测,这样的估测是unbiased的,N越大,估测值越靠近实际值。 bias是
2022-05-20 22:50:57
295
原创 李宏毅机器学习笔记Day2—回归
Regression(回归)的步骤看似比较复杂,其实也就是上节课老师所讲的三步:引入一组model ➡️评估这组model 的好坏 ➡️得到最佳的function。 老师引入了一个很有趣的例子:选择培养宝可梦。 找一个function,输入一只宝可梦的信息,预测它的CP(战斗力)的值。 一、初始的方法 1.Model Model:y=b+wxcp,w b 是参数,xcp是进化前的CP值。 Training Data:十只宝可梦的前后CP值,是真实的值。 Loss function:用来衡量w和b的好坏,红色
2022-05-18 15:37:06
279
原创 李宏毅机器学习笔记Day1
机器学习发展历程 自1950年来有了人工智慧,后引入了机器学习和深度学习。 什么是机器学习 让机器拥有学习的能力,去学习。imagine recognition,playing GO等 Looking for a Function from Data.找到一个Function,让它能够实现相关功能 ...
2022-05-17 17:13:25
289
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人