
医学+深度学习
文章平均质量分 86
带我去滑雪
Statistical Learning
如有任何问题,欢迎私信!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
基于迁移学习实现肺炎X光片诊断分类
基于迁移学习的肺炎X光片诊断分类研究,不仅可以缓解医生在实际工作中因繁重工作负担导致的诊断错误问题,还能够通过高效、准确的自动化诊断方法,在早期筛查中提供帮助,尤其是在偏远地区或医疗资源匮乏的环境中,为患者提供及时的诊疗建议,极大地促进了医疗资源的合理分配。原创 2025-04-16 17:28:48 · 367 阅读 · 0 评论 -
基于深度学习的MRI分割提取LGG的多维度形状特征
本研究以深度学习为基础,构建自动分割模型对LGG的MRI图像进行精准分割,在此基础上提取肿瘤的多维度形状特征,并探索这些特征与分子亚型之间的关联性。通过建立影像特征到基因组特征的映射关系,旨在实现低成本、无创伤的分子分型预测,不仅有助于提高影像在临床中的决策支持能力,也推动了医学影像智能分析向多模态融合、精准识别的方向迈进。原创 2025-04-16 12:12:38 · 1132 阅读 · 0 评论 -
深度学习ResNet模型提取影响特征
在众多CNN架构中,ResNet(残差网络)因其独特的残差连接机制,有效缓解了网络加深带来的梯度消失问题,能够训练更深层次的模型,从而捕捉更复杂、抽象的影像特征。相比浅层网络或传统方法,ResNet能自动从原始图像中学习出更具区分性的表征,提升分类和预测性能。在影像组学应用中,ResNet不仅可以代替手工特征提取过程,还能与传统特征融合,实现更高层次的特征整合,增强模型的泛化能力。因此,将ResNet应用于影像组学特征提取,不仅符合当前智能医疗发展的趋势,也为精准医学提供了强有力的技术支撑。原创 2025-04-13 22:59:45 · 674 阅读 · 0 评论 -
使用治疗前MR图像预测脑膜瘤Ki-67的多模态深度学习模型
该文章利用多模态技术,开发了一个通过MRI数据准确评估脑膜瘤Ki-67指数的深度学习模型。凭借该研究多模态融合的启发,本文对如何解释不同模态信息融合进行了更进一步的分析。原创 2025-04-11 20:38:57 · 877 阅读 · 0 评论 -
基于因果特征选择进行癌症关键预后基因识别的新方法CPCG
如何将深度学习与因果推理有效结合,实现多模态高维数据的因果建模,也是当前研究热点之一。未来,随着因果推理理论的进一步发展及其与临床实践的深入结合,其在疾病预测、早筛机制、治疗优化等方面的应用将日趋广泛,成为推动医学智能化的重要引擎。原创 2025-04-11 16:22:34 · 817 阅读 · 0 评论