Counting Stars
题意:给一个
n
n
n 个元素的序列,
m
m
m 个操作,三种操作:
①区间求和(输出)
②区间每个元素减去各自的
l
o
w
b
i
t
lowbit
lowbit
③区间每个元素各自二进制最高位的
1
1
1 左移一位。
我们首先可以考虑一个问题,对于一个元素而言第二种操作可以做多少次呢?显然是 l o g log log 次,那么操作 3 3 3 是否会影响操作 2 2 2 的次数呢?当然不会,无论操作 3 3 3 做多少次,一个元素二进制内 1 1 1 的个数都不会改变,也就是说,在此题中一个元素最多只能做 l o g log log 次操作 2 2 2 。那么我们也就想对于操作 2 2 2 ,同理于区间开根,区间更新的时候先去判断这个区间再做操作 2 2 2 是否有意义再去更新(实际这里同样适用于操作 3 3 3 ,因为操作 2 2 2 无意义是因为区间都是 0 0 0 ,那么此时操作 3 3 3 也无意义)。还有一个操作 3 3 3 怎么处理呢?我们发现操作 3 3 3 只与最高位有关,那么我们可以把一个数拆为最高位与其他位两个数字,分别去维护区间和。操作 3 3 3 实际上也就是最高位的区间 × 2 ×2 ×2 。然后注意进行操作 2 2 2 的时候,要判断是否此时这个数的其他位已经是 0 0 0 ,在这种情况下不要忘记将最高位直接置零。
#include <bits/stdc++.h>
#define lson rt<<1
#define rson (rt<<1)|1
#define P pair<int, int>
using namespace std;
typedef long long ll;
const int N = 1e5 + 10;
const int mod = 998244353;
int n, m;
int lz[N << 2];
P tree[N << 2];
void push_up(int rt) {
tree[rt].first = (tree[lson].first + tree[rson].first) % mod;
tree[rt].second = (tree[lson].second + tree[rson].second) % mod;
}
void push_down(int rt) {
if (lz[rt] == 1) return ;
lz[lson] = 1ll * lz[lson] * lz[rt] % mod;
lz[rson] = 1ll * lz[rson] * lz[rt] % mod;
tree[lson].first = 1ll * tree[lson].first * lz[rt] % mod;
tree[rson].first = 1ll * tree[rson].first * lz[rt] % mod;
lz[rt] = 1;
}
void build(int rt, int l, int r) {
lz[rt] = 1;
if (l == r) {
int x;
scanf("%d", &x);
for (int i = 30; i >= 0; --i) {
if ((x >> i) & 1) {
tree[rt].first = (1 << i);
tree[rt].second = x - (1 << i);
break;
}
}
return ;
}
int mid = l + r >> 1;
build(lson, l, mid);
build(rson, mid + 1, r);
push_up(rt);
}
void update1(int rt, int l, int r, int L, int R) {
if (tree[rt].first + tree[rt].second == 0) return ;
if (l == r) {
if (tree[rt].second == 0) {
tree[rt].first = 0;
}
else {
tree[rt].second -= tree[rt].second & (-tree[rt].second);
}
return ;
}
push_down(rt);
int mid = l + r >> 1;
if (mid >= L) update1(lson, l, mid, L, R);
if (mid < R) update1(rson, mid + 1, r, L, R);
push_up(rt);
}
void update2(int rt, int l, int r, int L, int R) {
if (tree[rt].first + tree[rt].second == 0) return ;
if (L <= l && r <= R) {
lz[rt] = lz[rt] * 2 % mod;
tree[rt].first = tree[rt].first * 2 % mod;
return ;
}
push_down(rt);
int mid = l + r >> 1;
if (mid >= L) update2(lson, l, mid, L, R);
if (mid < R) update2(rson, mid + 1, r, L, R);
push_up(rt);
}
int query(int rt, int l, int r, int L, int R) {
if (L <= l && r <= R) {
return (tree[rt].first + tree[rt].second) % mod;
}
push_down(rt);
int mid = l + r >> 1, sum = 0;
if (mid >= L) sum = query(lson, l, mid, L, R);
if (mid < R) sum = (sum + query(rson, mid + 1, r, L, R)) % mod;
return sum;
}
int main() {
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
#endif
int T;
scanf("%d", &T);
while(T--) {
scanf("%d", &n);
build(1, 1, n);
scanf("%d", &m);
while(m--) {
int op, L, R;
scanf("%d%d%d", &op, &L, &R);
if (op == 1) {
printf("%d\n", query(1, 1, n, L, R));
}
else if (op == 2) {
update1(1, 1, n, L, R);
}
else {
update2(1, 1, n, L, R);
}
}
}
}