2021“MINIEYE杯”中国大学生算法设计超级联赛(8)Counting Stars

本文介绍了一种区间操作的高效算法,包括区间求和、区间元素减去各自最低位二进制数和区间元素最高位左移一位。通过树状数组(也称作线段树)来实现,讨论了如何处理各种操作,特别是如何在不影响操作次数的情况下处理二进制位的变化。算法的关键在于合理地更新和查询区间状态,以达到快速响应各种区间操作的目的。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Counting Stars

原题链接

题意:给一个 n n n 个元素的序列, m m m 个操作,三种操作:
①区间求和(输出)
②区间每个元素减去各自的 l o w b i t lowbit lowbit
③区间每个元素各自二进制最高位的 1 1 1 左移一位。

我们首先可以考虑一个问题,对于一个元素而言第二种操作可以做多少次呢?显然是 l o g log log 次,那么操作 3 3 3 是否会影响操作 2 2 2 的次数呢?当然不会,无论操作 3 3 3 做多少次,一个元素二进制内 1 1 1 的个数都不会改变,也就是说,在此题中一个元素最多只能做 l o g log log 次操作 2 2 2 。那么我们也就想对于操作 2 2 2 ,同理于区间开根,区间更新的时候先去判断这个区间再做操作 2 2 2 是否有意义再去更新(实际这里同样适用于操作 3 3 3 ,因为操作 2 2 2 无意义是因为区间都是 0 0 0 ,那么此时操作 3 3 3 也无意义)。还有一个操作 3 3 3 怎么处理呢?我们发现操作 3 3 3 只与最高位有关,那么我们可以把一个数拆为最高位与其他位两个数字,分别去维护区间和。操作 3 3 3 实际上也就是最高位的区间 × 2 ×2 ×2 。然后注意进行操作 2 2 2 的时候,要判断是否此时这个数的其他位已经是 0 0 0 ,在这种情况下不要忘记将最高位直接置零。

#include <bits/stdc++.h>
#define lson rt<<1
#define rson (rt<<1)|1
#define P pair<int, int>

using namespace std;

typedef long long ll;

const int N = 1e5 + 10;
const int mod = 998244353;

int n, m;

int lz[N << 2];

P tree[N << 2];

void push_up(int rt) {
    tree[rt].first = (tree[lson].first + tree[rson].first) % mod;
    tree[rt].second = (tree[lson].second + tree[rson].second) % mod;
}

void push_down(int rt) {
    if (lz[rt] == 1) return ;
    lz[lson] = 1ll * lz[lson] * lz[rt] % mod;
    lz[rson] = 1ll * lz[rson] * lz[rt] % mod;
    tree[lson].first = 1ll * tree[lson].first * lz[rt] % mod;
    tree[rson].first = 1ll * tree[rson].first * lz[rt] % mod;
    lz[rt] = 1;
}

void build(int rt, int l, int r) {
    lz[rt] = 1;
    if (l == r) {
        int x;
        scanf("%d", &x);
        for (int i = 30; i >= 0; --i) {
            if ((x >> i) & 1) {
                tree[rt].first = (1 << i);
                tree[rt].second = x - (1 << i);
                break;
            }
        }
        return ;
    }
    int mid = l + r >> 1;
    build(lson, l, mid);
    build(rson, mid + 1, r);
    push_up(rt);
}

void update1(int rt, int l, int r, int L, int R) {
    if (tree[rt].first + tree[rt].second == 0) return ;
    if (l == r) {
        if (tree[rt].second == 0) {
            tree[rt].first = 0;
        }
        else {
            tree[rt].second -= tree[rt].second & (-tree[rt].second);
        }
        return ;
    }
    push_down(rt);
    int mid = l + r >> 1;
    if (mid >= L) update1(lson, l, mid, L, R);
    if (mid < R) update1(rson, mid + 1, r, L, R);
    push_up(rt);
}

void update2(int rt, int l, int r, int L, int R) {
    if (tree[rt].first + tree[rt].second == 0) return ;
    if (L <= l && r <= R) {
        lz[rt] = lz[rt] * 2 % mod;
        tree[rt].first = tree[rt].first * 2 % mod;
        return ;
    }
    push_down(rt);
    int mid = l + r >> 1;
    if (mid >= L) update2(lson, l, mid, L, R);
    if (mid < R) update2(rson, mid + 1, r, L, R);
    push_up(rt);
}

int query(int rt, int l, int r, int L, int R) {
    if (L <= l && r <= R) {
        return (tree[rt].first + tree[rt].second) % mod;
    }    
    push_down(rt);
    int mid = l + r >> 1, sum = 0;
    if (mid >= L) sum = query(lson, l, mid, L, R);
    if (mid < R) sum = (sum + query(rson, mid + 1, r, L, R)) % mod;
    return sum;
}

int main() {
#ifndef ONLINE_JUDGE
    freopen("in.txt", "r", stdin);
    freopen("out.txt", "w", stdout);
#endif
    int T;
    scanf("%d", &T);
    while(T--) {
        scanf("%d", &n);
        build(1, 1, n);
        scanf("%d", &m);
        while(m--) {
            int op, L, R;
            scanf("%d%d%d", &op, &L, &R);
            if (op == 1) {
                printf("%d\n", query(1, 1, n, L, R));
            }
            else if (op == 2) {
                update1(1, 1, n, L, R);
            }
            else {
                update2(1, 1, n, L, R);
            }
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值