1、自动驾驶解决方案相关的芯片
自动驾驶一定是未来10~15年最为确定的,可实现的方向之一。
自动驾驶解决方案的芯片不同的厂商对于其定义也不尽相同,但其核心基本最终要落到算力上,落到高效解决自动驾驶中所遇到的现实中的AI的问题。
2、人工智能和机器学习芯片设计:
随着人工智能和机器学习的今年爆火,需求持续增长。
专门用于加速深度学习和神经网络推理的芯片,极具前景:如图形处理单元(GPU)、边缘计算芯片、专用硬件加速器等。
3、RISC-V处理器核心/IP设计
基于RISC-V指令集架构设计的处理器广泛应用在数据中心、云计算、高性能计算领域,阿里巴巴和亚马逊都在自主设计基于RISC-V核心的芯片;在自动驾驶、边缘计算、人工智能方面,也有RISC-V的身影。在5G通信基站、物联网等方面,RISC-V也崭露头角。可以说,RISC-V基本覆盖了科技前沿领域的芯片应用。
近几年,以RISC-V架构为核心的CPU出货量在以相当可观的速度逐年增加,在全球100亿颗RISC-V核出货量中,中国公司占据了约50%的份额。
RISC-V的处理器设计相比x86这样的大块头来说,对初学者更加友好,开源的资源也很容易获取。
4、超大规模芯片的设计,比如CPU、GPU
GPU相比CPU更适合AI运算,可以说在AI时代大放异彩。这两种芯片已经是芯片界的元老,推荐这两个方向不仅仅是因为它们在消费电子、服务器、云计算等领域有着稳定的出货量,更是因为CPU/GPU作为超大规模的芯片,对个人的技能栈能做非常全面的学习补足。这两款芯片包含着大量的IP、总线和各种模块,可以学习不同模块的设计思想和精髓,理解总线及通信协议。如果能把这样打大块头吃透,再去做中小型的SoC、MCU、AI芯片等会变得更容易。
当然没有十几二十年的学习和经验积累,是搞不定它们