题目、
在N*N的方格棋盘放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在与棋盘边框成45角的斜线上。
你的任务是,对于给定的N,求出有多少种合法的放置方法。
Input
共有若干行,每行一个正整数N≤10,表示棋盘和皇后的数量;如果N=0,表示结束。
Output
共有若干行,每行一个正整数,表示对应输入行的皇后的不同放置数量。
Sample Input
1
8
5
0
Sample Output
1
92
10
与A题相似也是在同行同列上不能放棋子,其中在x=y的地方上也不能放。
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
int n,k,vis[11],ans[11],sum;
void dfs(int cnt){
if(cnt>n){
sum++;
return;
}
int x=cnt;
for(int y=1;y<=n;y++){
int i;
for(i=1;i<x;i++){
if(y==vis[i])break;
}
if(i<x) continue;
for(i=1;i<x;i++){
if(abs(y-vis[i])==x-i) break;
}
if(i<x) continue;
vis[x]=y;
dfs(cnt+1);
}
}
int main()
{
for(int i=1;i<=10;i++){
sum=0;
n=i;
dfs(1);
ans[i]=sum;
}
while(~scanf("%d",&n)&&n){
cout<<ans[n]<<endl;
}
system("pause");
return 0;
}