torch.unsqueeze()和torch.unsqueeze()

这篇博客介绍了PyTorch中`torch.squeeze()`和`torch.unsqueeze()`两个函数的使用方法。通过示例代码,展示了如何通过这两个函数改变张量的维度。`torch.squeeze()`用于移除张量中维度为1的轴,而`torch.unsqueeze()`则在指定位置插入一个维度为1的新轴,帮助理解张量操作在深度学习中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

### torch.unsqueeze 函数详解 `torch.unsqueeze` 是 PyTorch 中用于在指定位置插入维度的函数。它能够在张量(Tensor)中增加一个大小为 1 的维度,从而改变张量的形状。以下是该函数的参数说明使用示例。 #### 参数详解 - **input**: 输入张量。 - **dim**: 指定要插入新维度的位置。如果 `dim=0`,则新维度会被插入到最前面;如果 `dim=-1` 或其他负数,则从最后开始计算位置[^1]。 #### 使用示例 以下代码展示了如何使用 `torch.unsqueeze` 在不同位置插入新维度: ```python import torch x = torch.tensor([1, 2, 3, 4]) # 原始张量 shape: (4,) y = torch.unsqueeze(x, 0) # 插入到第 0 维度,shape: (1, 4) z = torch.unsqueeze(x, 1) # 插入到第 1 维度,shape: (4, 1) print("Original Tensor:", x.shape) # 输出: torch.Size([4]) print("After unsqueeze(dim=0):", y.shape) # 输出: torch.Size([1, 4]) print("After unsqueeze(dim=1):", z.shape) # 输出: torch.Size([4, 1]) ``` #### 注意事项 - 如果输入张量已经是期望的形状,则调用 `torch.unsqueeze` 不会改变其值或内容,仅改变形状。 - 插入的维度必须合法,不能超出张量的总维度范围[^2]。 #### 应用场景 `torch.unsqueeze` 常用于调整张量形状以满足某些操作的需求,例如: - 将一维向量转换为二维矩阵以便进行矩阵运算。 - 调整张量形状以匹配神经网络模型的输入要求。 ```python a = torch.rand((2, 3)) # shape: (2, 3) b = torch.unsqueeze(a, 1) # shape: (2, 1, 3) print("Original Tensor:", a.shape) # 输出: torch.Size([2, 3]) print("After unsqueeze(dim=1):", b.shape) # 输出: torch.Size([2, 1, 3]) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

饿了就干饭

你的鼓励将是我创作的最大动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值