registration_配准
文章平均质量分 86
passion_up
总有人间一两风,填我十万八千梦。用于记录日常,欢迎交流。WeChat:flames_-
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
图像融合质量评价指标
摘要:本文介绍了6种图像融合质量评估指标:MI(互信息)衡量信息保留量,适用于多模态融合;VIF(视觉保真度)模拟人眼感知,适合自然场景;SF(空间频率)反映细节丰富度;Qabf(边缘保留质量)适用于无参考图像评估;SD(标准差)快速衡量对比度;DeltaE量化色彩差异。表格对比了各指标的优缺点与应用场景,MI计算简单但对空间结构不敏感,VIF符合人眼感知但计算复杂,SF快速反映细节但无法区分噪声,Qabf对边缘敏感,SD计算快速,DeltaE专用于色彩评估。原创 2025-05-28 09:34:27 · 989 阅读 · 0 评论 -
数据集dataset
TNO、MSRS、M3FD 和 LLVIP 均为包含红外与可见光图像对的数据集,适用于不同场景下的多模态融合与目标检测研究。考虑 退化场景(例如,强光、低照度、低源图像质量、非刚性失真)聚焦校园环境中的行人、车辆等目标。覆盖多类目标(如行人、车辆、动物)覆盖典型场景(如道路、建筑等)。原创 2025-03-21 11:36:29 · 661 阅读 · 0 评论 -
DDcGAN_多分辨率图像融合的双鉴别条件生成对抗网络_译文马佳义
生成器的目的是基于特定设计的内容损失生成类似真实的融合图像,以欺骗两个鉴别器,而两个鉴别器的目的是除了内容损失之外,分别区分融合图像与两个源图像之间的结构差异。因此,融合图像被迫同时保持红外图像中的热辐射和可见光图像中的纹理细节。此外,为了融合不同分辨率的源图像,例如低分辨率红外图像和高分辨率可见光图像,我们的DDcGAN将下采样融合图像约束为具有与红外图像相似的属性。此外,我们还将我们的DDcGAN应用于融合不同分辨率的多模态医学图像,例如低分辨率正电子发射断层扫描图像和高分辨率磁共振图像。原创 2025-01-05 17:07:38 · 729 阅读 · 3 评论 -
级联配准learning
这些算法可以找到图像中的关键特征点,并根据特征点的描述子来精确匹配两张图像中的对应点,然后通过计算变换矩阵(如仿射变换或透视变换矩阵)来实现更准确的图像配准。它主要用于将不同视角、不同模态或者不同时间获取的图像进行精确的对齐,并且是通过多个阶段(级联)的处理来逐步优化配准的精度。比如,先利用图像的地理坐标等信息进行初步的粗配准,然后基于地表特征(如河流、山脉等)的细节进行精配准,以便进行土地利用变化监测、资源勘查等应用。:可以根据不同的图像类型和应用需求,灵活选择不同的配准算法和参数进行每一级的配准。原创 2025-01-02 17:33:24 · 630 阅读 · 0 评论 -
图像配准:从SIFT到深度学习+如何使用深度学习创建可变形图像配准
简单的说,我们选择两个图像中的感兴趣点,将参考图像(reference image)与感测图像(sensed image)中的等价感兴趣点进行关联,然后变换感测图像使两个图像对齐。通常,由于患者的局部变形(因呼吸,解剖学变化等),两个医学图像之间的变换不能简单地通过单应矩阵描述,这需要更复杂的变换模型,例如由位移矢量场表示微分同胚(diffeomorphisms)。作者声称,与传统的基于特征的方法相比,这种无监督方法具有相当或更高的准确率和鲁棒性,并且具有更快的执行速度。然后我们设定比率来保持正确率。原创 2024-12-27 10:19:45 · 1390 阅读 · 0 评论 -
【图像配准】使用OpenCV进行多图配准拼接
本篇主要利用OpenCV自带的配准拼接函数。原创 2024-12-27 10:13:44 · 1111 阅读 · 0 评论 -
图像配准的前世今生:从人工设计特征到深度学习
这些图像可以是不同时间拍摄的(多时间配准),可以是不同传感器拍摄的(多模配准),可以是不同视角拍摄的。这些图像之间的空间关系可能是刚体的(平移和旋转)、仿射的(例如错切),也有可能是单应性的,或者是复杂的大型形变模型。简而言之,我们在两幅图像中选择兴趣点,将参考图像中的每个兴趣点和它在待配准图像中的对应点关联起来,然后对待批准图像进行变换,这样两幅图像就得以对齐。这篇文章的作者称,与传统的基于特征的方法相比,这种无监督方法以更快的推理速度得到了相当的或者更高的准确率,以及关于光照变化的鲁棒性。原创 2024-12-25 23:44:39 · 1170 阅读 · 0 评论 -
关于图像配准(Image Registration)的基础知识汇总
图像配准是将不同时间、传感器或条件下获取的图像进行匹配、叠加的技术,旨在找到图像间点对点映射关系或特征关联,广泛应用于计算机视觉、医学、遥感等领域。其方法分为基于灰度、特征、域变换等类别,传统方法通过迭代优化,现代深度学习也发挥重要作用 。配准流程包括特征检测、匹配、变换模型估计和图像变换重采样。常用变换模型有刚体、仿射等,评价标准有相关性、互信息等。随着技术发展,图像配准在多模态、复杂场景下的精度和效率不断提升,持续为各领域提供关键技术支持。原创 2024-12-24 13:12:26 · 5041 阅读 · 0 评论 -
图像配准有哪些技术?
图像配准是计算机视觉和医学成像中的一项关键技术,用于将多幅图像对齐到一个共同的坐标系中。答:流行的库包括用于一般计算机视觉任务的 OpenCV、用于医学图像分析的 SimpleITK 以及用于基于学习的方法的 TensorFlow 或 PyTorch。基于特征的配准方法可识别和匹配图像之间的独特特征。答:基于特征的配准依赖于检测和匹配图像之间的不同特征,而基于强度的配准使用像素值和统计测量来找到最佳对齐。答:可变形配准的挑战包括处理复杂的变形、高昂的计算成本以及对精确的模型参数的需求。原创 2024-12-23 22:54:42 · 1328 阅读 · 0 评论 -
图像处理中的图像配准方法
通过各种方法(从基于特征的方法(如 ORB 和 SIFT)到基于强度的技术和高级深度学习模型),此过程可以整合在不同条件下或从不同传感器捕获的图像。图像对齐或图像配准是将不同时间、从不同视点或使用不同传感器拍摄的同一场景的图像叠加在一起以实现空间对应的过程。它可识别不受比例和旋转影响的关键点,从而能够有效地匹配大小和方向各异的图像之间的特征。它使用积分图像来加速检测器和描述符的计算。根据图像的性质和应用的具体要求,使用不同的方法。图像配准将同一场景的多幅图像对齐到共同的坐标系,以便进行准确的比较和分析。原创 2024-12-23 22:23:56 · 3663 阅读 · 0 评论
分享