1初识神经网络
神经网络按层划分,中间部分为隐藏层,最后的层为输出层。每个层中有一个或者多个神经元。输入到layer中的数据是输入数据,从隐藏层输出的数据叫激活,从output layer输出的数据是最终获得的输出数据。
如下,以人脸识别为例子
中间隐藏层一层一层的对图片进行解析,并将激活输入到下一层,最终获得结果的可能性。
2神经网络的构建
2.1神经网络的网络层
神经网络的网络层实际就是隐藏层和输出层的总和,以下分别介绍隐藏层和输出层的大致运行内容
如上,实际每一层的神经元其实就是一个逻辑回归单元。输入的数据在逻辑回归单元的计算下,得到的概率,每个神经元都可以对输入的数据进行处理,从而得到了一个数据向量,就是该层输出的激活。然后将这个激活输入到下一层进行同样的操作
输出层也是如此,只是输出层一般情况只存在