(吴恩达机器学习)4.神经网络

1初识神经网络

神经网络按层划分,中间部分为隐藏层,最后的层为输出层。每个层中有一个或者多个神经元。输入到layer中的数据是输入数据,从隐藏层输出的数据叫激活,从output layer输出的数据是最终获得的输出数据。

如下,以人脸识别为例子

中间隐藏层一层一层的对图片进行解析,并将激活输入到下一层,最终获得结果的可能性。

2神经网络的构建

2.1神经网络的网络层

神经网络的网络层实际就是隐藏层和输出层的总和,以下分别介绍隐藏层和输出层的大致运行内容

        如上,实际每一层的神经元其实就是一个逻辑回归单元。输入的数据在逻辑回归单元的计算下,得到的概率,每个神经元都可以对输入的数据进行处理,从而得到了一个数据向量,就是该层输出的激活。然后将这个激活输入到下一层进行同样的操作

        输出层也是如此,只是输出层一般情况只存在

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值