春季学习报告 4.12

本周总结了CTF竞赛中的Web安全题目,完成了漏洞探索、SQL注入等基础挑战,计划通过竞赛题提升技能并补充知识。同时,分享了Win10系统优化与固态硬盘使用经验。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本周主要是 整理了一下笔记和 完善了 一些些想法
目前ctfhub的web方面所有题目已经完成
包括漏洞探索 sql 文件上传 rce 密码等等 基本上可以算入门了
web进阶方面,因为目前手里缺少linux 更没有kali版本,所以暂时无法深入。
而pwn reverse crypto misc等等则完全因为知识所限,暂时下不了手
(当然也没多少题开放)
所以技能树方面可能暂时告一段落了。接下来我会尝试在竞赛题中挑几道比较简单,而且有教程的题下手,一方面可以体验一下比赛的感觉,另一方面也可以直接接受实践部分来 补充知识点,顺便多学一点点知识。
然后因为学校加了实验课,要用visio画图 Excel 和论文,等等,所以这一周和下一周估计不会上机操作很多的东西了(不然眼睛熬不住了)。
然后以下是笔记部分
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
大概就是这些了吧…
题外话
把win10的系统装raid里了,结果还是卡得不行。4k读取能力并没有什么提升,反而要浪费cpu寻址(幸亏我这还是硬raid)。话说因为系统一开始用的是window to go 和镜像组合装的,至少来来回回镜像 还原了五六次,现在不知道是笔记本主板还是 系统的问题 装在笔记本SATA3的ssd 整个trim就没法启动,对固态损害极大。最后还是觉得装磁盘里靠谱些,然而就是低得离谱的4k读取能力。
usb3 的固态trim倒是可以正常运行,也是奇了怪了。
不过随着颗粒的提升,在桌面端普通用户手里,固态基本上是可以取代hdd了。在持续读写速度差不多的情况下,固态的随机4k’好太多。 毕竟大部分时候电脑的流畅度看的是4k而不是持续读写。
不过话又说回来,win10 8 还是给了一个黑科技的,readyboost
用属性打开一个非系统盘,就有这个插件,可以把频繁随机读取的4k数据存到加速盘中,这样系统在读4k的时候寄可以从加速盘而不是系统盘里面读取,如果你的系统在hdd里,而有usb3 的固态或者稍微好一点点主控的u盘,就可以用这种方式来 提升流畅度!!!(不是提速)
当然 傲腾固态加传统hdd组合的方式也不错,现在一块 16gb的傲腾盘价格也就是两位数的样子,和hhd组合,提速效果还是很明显的。 Intel还是有点东西的。
但是鉴于我是AMD YES 所以没法用这个东西。
另外现在 华硕 天选太香了 想换笔记本的同学可以考虑一下
6500块钱 8核16框框的 4800h 和 1660ti 送 512固态 和 8gb内存 神舟可以滚了…

内容概要:本文介绍了基于Python实现的SSA-GRU(麻雀搜索算法优化门控循环单元)时间序列预测项目。项目旨在通过结合SSA的全局搜索能力和GRU的时序信息处理能力,提升时间序列预测的精度和效率。文中详细描述了项目的背景、目标、挑战及解决方案,涵盖了从数据预处理到模型训练、优化及评估的全流程。SSA用于优化GRU的超参数,如隐藏层单元数、学习率等,以解决传统方法难以捕捉复杂非线性关系的问题。项目还提供了具体的代码示例,包括GRU模型的定义、训练和验证过程,以及SSA的种群初始化、迭代更新策略和适应度评估函数。; 适合人群:具备一定编程基础,特别是对时间序列预测和深度学习有一定了解的研究人员和技术开发者。; 使用场景及目标:①提高时间序列预测的精度和效率,适用于金融市场分析、气象预报、工业设备故障诊断等领域;②解决传统方法难以捕捉复杂非线性关系的问题;③通过自动化参数优化,减少人工干预,提升模型开发效率;④增强模型在不同数据集和未知环境中的泛化能力。; 阅读建议:由于项目涉及深度学习和智能优化算法的结合,建议读者在阅读过程中结合代码示例进行实践,理解SSA和GRU的工作原理及其在时间序列预测中的具体应用。同时,关注数据预处理、模型训练和优化的每个步骤,以确保对整个流程有全面的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值