YOLOv8v10改进 | 注意力篇 | 手把手教你在YOLOv10上添加LSKAttention大核注意力机制(助力小目标检测极限涨点)

YOLOv8v10专栏限时订阅链接:YOLOv8v10创新改进高效涨点+永久更新中(至少500+改进)+高效跑实验发论文

目录

一、LSKAttention模块介绍

 LSKAttention模块简单介绍

 LSKAttention模块网络结构

   二、 LSKAttention核心代码

三、手把手教你添加 LSKAttention模块和修改task.py文件

1.首先在yolov10/ultralytics/nn/newsAddmodules创建一个.py文件

2.在yolov10/ultralytics/nn/newsAddmodules/__init__.py中引用

3.修改task.py文件

四、创建涨点yaml配置文件

参考版本1 : yolov10n_LSKA.yaml

 参考版本1 :正常运行 

参考版本2 : yolov10n_C2f_LSKA.yaml

 参考版本2 :正常运行  

五、本文总结


一、LSKAttention模块介绍

摘要:带有大型内核注意力 (LKA) 模块的视觉注意力网络 (VAN) 已被证明在一系列基于视觉的任务中提供了卓越的性能,超过了视觉转换器 (ViTs)。然而,随着卷积核大小的增加,这些 LKA 模块中的深度卷积层会导致计算和内存占用量呈二次方增加。为了缓解这些问题,并在 VAN 的注意力模块中使用非常大的卷积内核,我们提出了一个大

### 关于YOLOv10中的改进注意力机制 #### 注意力机制的工作原理 在YOLOv10中引入了多种先进的注意力机制,这些机制旨在增强模型对于不同尺度目标的检测能力以及整体性能。具体来说: - **静态和动态上下文信息结合**:这种新型的注意力机制能够同时考虑图像的空间位置关系及其语义含义,从而更精准地定位物体并减少误检情况的发生[^2]。 #### 实现方法 为了实现上述提到的各种注意力机制,在代码层面进行了如下操作: - 对于静态与动态上下文相结合的方式,主要是在`ultralytics`库下的训练脚本`train.py`里修改配置文件路径指向特定版本的YAML定义文件(如`yolov10_CoTA.yaml`),并通过加载自定义架构完成初始化过程。 ```python from ultralytics import YOLOv10 model = YOLOv10(r'/projects/ultralytics/ultralytics/cfg/models/v10/yolov10_CoTA.yaml') model.train(batch=16) ``` - 针对MSDA多尺度空洞注意力,则是基于DilateFormer框架设计了一套新的组件,该组件通过对输入特征图应用多个具有不同膨胀系数的卷积来进行处理,以此达到捕捉更范围内的依赖性的目的[^3]。 #### 性能提升的研究成果 研究表明,采用这些新颖的注意力方案可以显著改善YOLO系列算法的表现指标。特别是当应用于小尺寸或远距离的目标识别任务时,mAP值提升了约6个百分左右。此外,还有其他类型的注意力单元被集成进来进一步优化网络表现,比如CA(Coord Attention)[^4] 和 CBAM(Convolutional Block Attention Module)[^5] ,它们分别侧重于坐标轴方向上的响应聚合及通道间的信息交互。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值