一、本文介绍
🔥提升小目标检测精度?用 DPCF 重新定义 YOLOv13 的 Neck!
本文介绍将 DPCF 模块用于 YOLOv13 的 Neck特征融合改进,可以显著提升多尺度特征融合质量,尤其是在小目标、低对比度、红外等场景中,增强检测精度和鲁棒性,同时保持较低计算开销,是一种高效且实用的结构升级方案。具体怎么使用请看全文!
专栏改进目录:YOLOv13改进包含各种卷积、主干网络、各种注意力机制、检测头、损失函数、Neck改进、小目标检测、二次创新模块、HyperACE二次创新、独家创新等几百种创新点改进。
全新YOLOv13创新—发论文改进专栏链接:全新YOLOv13创新改进高效涨点+永久更新中(至少500+改进)+高效跑实验发论文
目录
1.首先在ultralytics/nn/newsAddmodules创建一个.py文件