一、本文介绍
🔥“更强、更准、更轻!SFSConv 改进 YOLOv11,检测性能全面进阶!
本文介绍将 SFS‑Conv 模块集成到 YOLOv11 中进行目标检测,可以充分融合空间与频率信息,增强特征表达的多样性和判别力,同时保持模型的轻量化结构。SFS‑Conv 的空间–频率感知机制能够提升检测精度、泛化能力及对复杂场景(如小目标、纹理复杂、噪声干扰)的适应性,是一种在不显著增加计算负担的前提下有效提升模型性能的策略。具体怎么使用请看全文!
专栏改进目录:YOLOv11改进专栏包含卷积、主干网络、各种注意力机制、检测头、损失函数、Neck改进、小目标检测、二次创新模块、C2PSA/C3k2二次创新改进、全网独家创新等创新点改进
全新YOLOv11-发论文改进专栏链接:全新YOLOv11创新改进高效涨点+永久更新中(至少500+改进)+高效跑实验发论文
目录
1.首先在ultralytics/nn/newsAddmodules创建一个.py文件