YOLOv13涨点改进 | 特征融合Neck改进篇 | TGRS 2025 | 引入FCM特征校正融合模块,通过空间维度和通道维度的校正,助力YOLOv13有效涨点--(全网独家创新首发)

一、本文介绍

本文介绍在YOLOv13中引入FCM模块有助于校正不同尺度与层级特征之间的信息偏差,通过空间与通道维度的自适应校正机制,提升特征表征的一致性与判别性FCM能有效抑制背景噪声、增强目标边界信息,特别对小目标、遮挡目标和复杂背景下的检测任务具有显著优势。同时,其轻量化设计与可学习权重调控机制,使YOLOv13在保持高效推理的同时,实现更精准、更鲁棒的目标检测性能。具体怎么使用请看全文!

专栏改进目录:YOLOv13改进包含各种卷积、主干网络、各种注意力机制、检测头、损失函数、Neck改进、小目标检测、二次创新模块、HyperACE二次创新、独家创新等几百种创新点改进。

全新YOLOv13创新—发论文改进专栏链接:全新YOLOv13创新改进高效涨点+永久更新中(至少500+改进)+高效跑实验发论文

目录

一、本文介绍

二、模块介绍

2.1 FCM模块的结构图

2.2 FCM模块的作用

1. 校正不同模态间的特征差异与干扰噪声

2. 提升模态间的互补信息感知能力

3. 提高后续融合质量

2.3 FCM模块的优势

1. 显著提升分割精度

2. 自适应融合能力强

3. 多模态鲁棒性强

4. 顺序敏感设计

三、完整核心代码

 四、手把手教你配置模块和修改task.py文件

1.首先在ultralytics/nn/newsAddmodules创建一个.py文件

2.在ultralytics/nn/newsAddmodules/__init__.py中引用

3.修改task.py文件

五、创建涨点yaml配置文件

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值