一、本文介绍
本文介绍在YOLOv13中引入FCM模块,有助于校正不同尺度与层级特征之间的信息偏差,通过空间与通道维度的自适应校正机制,提升特征表征的一致性与判别性。FCM能有效抑制背景噪声、增强目标边界信息,特别对小目标、遮挡目标和复杂背景下的检测任务具有显著优势。同时,其轻量化设计与可学习权重调控机制,使YOLOv13在保持高效推理的同时,实现更精准、更鲁棒的目标检测性能。具体怎么使用请看全文!
专栏改进目录:YOLOv13改进包含各种卷积、主干网络、各种注意力机制、检测头、损失函数、Neck改进、小目标检测、二次创新模块、HyperACE二次创新、独家创新等几百种创新点改进。
全新YOLOv13创新—发论文改进专栏链接:全新YOLOv13创新改进高效涨点+永久更新中(至少500+改进)+高效跑实验发论文
目录
1.首先在ultralytics/nn/newsAddmodules创建一个.py文件