前言
随着DeepSeek的性能提升,AI大模型的热度逐渐攀升,出现在大众的视野。为了不被时代浪潮冲走,紧跟步伐,学习AI大模型的运用,目前所学习了解的模型有两种,一种为DeepSeek模型,一种为YoLo模型,毕竟目前在工业市面上较为成熟的应用就是视觉检测这块了。
一、DeepSeek是什么?
DeepSeek是一个面向客户的拥有6710亿参数规模的人工智能,目前最火的分为DeepSeek-v3模型(指令模型)和DeepSeek-r1模型(推理模型)两种。
二、部署方式
1.API + DeepSeek服务器
在官网上点击API开放平台,创建API Keys,可通过下载github上有的客户端软件进行查看,但需在设置里将创建好的API Keys复制上来,当然官网上有提供了API通过代码调用。这是收费的。
2. API + 第三方服务器
操作跟上述类似,以阿里云为例,可进入阿里云百炼控制台,在模型广场找到DeepSeek模型,点击查看我的API-KEY来创建,点击API示例,有写如何通过代码使用。这也是要收费的。
3.将模型部署到本地电脑或服务器上
通过Ollama(哦拉玛)开源工具,搜索想要的AI模型,复制相应的运行指令,通过命令行输入该指令,会自动下载模型,下载完后会以命令行形式出现对话框,即完成部署。如您解决不好看,可下载可视化工具,来运用模型(目前运用的是AythingLLM软件查看)
如果运用该模型编写自己应用,可在GitHub上找到Ollama的OpenAI API文档(当前实现是使用Python版本,github也有JS版本)
运用示例代码
from openai import OpenAI
client = OpenAI(
#部署ollama的电脑IP,直接用就行
base_url='http://localhost:11434/v1/',
# 可以自己定义
api_key='ollama',
)
chat_completion = client.chat.completions.create(
messages=[
{
'role': 'user',
#输入内容
'content': 'Say this is a test',
}
],
#使用的模型
model='deepseek-r1:1.5b',
)
print(chat_completion.choices[0].message.content)
结果显示
总结
目前DeepSeek模型API已掌握最基础的调用,也是成功的开始,希望能再接再厉,收获成果。