DeepSeek部署


前言

随着DeepSeek的性能提升,AI大模型的热度逐渐攀升,出现在大众的视野。为了不被时代浪潮冲走,紧跟步伐,学习AI大模型的运用,目前所学习了解的模型有两种,一种为DeepSeek模型,一种为YoLo模型,毕竟目前在工业市面上较为成熟的应用就是视觉检测这块了。


一、DeepSeek是什么?

DeepSeek是一个面向客户的拥有6710亿参数规模的人工智能,目前最火的分为DeepSeek-v3模型(指令模型)和DeepSeek-r1模型(推理模型)两种。

二、部署方式

1.API + DeepSeek服务器

在官网上点击API开放平台,创建API Keys,可通过下载github上有的客户端软件进行查看,但需在设置里将创建好的API Keys复制上来,当然官网上有提供了API通过代码调用。这是收费的。在这里插入图片描述

2. API + 第三方服务器

操作跟上述类似,以阿里云为例,可进入阿里云百炼控制台,在模型广场找到DeepSeek模型,点击查看我的API-KEY来创建,点击API示例,有写如何通过代码使用。这也是要收费的。
在这里插入图片描述

3.将模型部署到本地电脑或服务器上

通过Ollama(哦拉玛)开源工具,搜索想要的AI模型,复制相应的运行指令,通过命令行输入该指令,会自动下载模型,下载完后会以命令行形式出现对话框,即完成部署。如您解决不好看,可下载可视化工具,来运用模型(目前运用的是AythingLLM软件查看)

如果运用该模型编写自己应用,可在GitHub上找到Ollama的OpenAI API文档(当前实现是使用Python版本,github也有JS版本)
在这里插入图片描述

运用示例代码

from openai import OpenAI

client = OpenAI(
	#部署ollama的电脑IP,直接用就行
    base_url='http://localhost:11434/v1/',

    # 可以自己定义
    api_key='ollama',
)

chat_completion = client.chat.completions.create(
    messages=[
        {
            'role': 'user',
            #输入内容
            'content': 'Say this is a test',
        }
    ],
    #使用的模型
    model='deepseek-r1:1.5b',
)

print(chat_completion.choices[0].message.content)

结果显示
在这里插入图片描述

总结

目前DeepSeek模型API已掌握最基础的调用,也是成功的开始,希望能再接再厉,收获成果。

### DeepSeek 部署指南 #### 准备工作 为了成功部署DeepSeek模型,确保已掌握基础的Python编程技能和Git操作技巧[^2]。这有助于更顺利地完成后续步骤。 #### 模型导出 按照官方文档指示,将训练好的DeepSeek模型转换成适合生产环境中使用的格式。此过程通常涉及保存优化后的参数文件并打包必要的配置项以便于加载到目标平台上运行[^1]。 #### 基础设施搭建 选择合适的云服务平台或本地服务器作为承载环境,并安装所需的依赖库和服务组件。对于希望快速上手测试的朋友来说,可以考虑利用Docker容器化方案来简化这一环节的工作量;而对于追求高性能的企业级应用,则可能需要更加专业的硬件资源规划和支持。 #### API接口开发 基于RESTful风格设计对外提供访问权限控制机制完善的Web Service端点,使得第三方开发者可以通过简单的HTTP请求获取由DeepSeek处理过的高质量响应结果。同时也要考虑到安全性方面的要求,在传输层面上采取加密措施保护敏感信息的安全性。 #### 正式上线发布 经过充分的功能性和稳定性验证之后,就可以把整个项目部署至线上正式投入使用了。此时还应该建立一套完整的监控体系用于实时跟踪系统的健康状况以及性能表现,及时发现潜在问题并作出相应调整以保障服务质量持续稳定可靠。 ```bash # 使用 Docker 构建镜像示例命令 docker build -t deepseek-model . # 运行容器实例 docker run -d --name deepseek-service -p 5000:5000 deepseek-model ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值