YOLO理论知识简单了解


前言

对YOLO模型的简单理解,对其进行记录。


一、YOLO是什么?以及核心思想?

YOLO(You Only Look Once)模型是一种用于实时目标检测的深度学习模型,所以首先需了解目标检测的概念。

1、目标检测的本质与分类

1.目标检测本质

  • 目标在哪里:检测框具体位置
  • 目标是什么:检测框检测的物品类别

以此可推断:需要AI实时目标检测,通过样例【如:数据集(人手动设置检测框和标签的图片集)】学习,知道目标在哪里,识别相应类型【使用相关方法通过检测框去进行图片特征提取、通过标签来分类识别】。

2.目标检测分类
1、两阶段目标检测:先找出候选的一些区域,再对区域进行调整分类
2、单阶段目标检测:采用一个网络一步到位,输入图片,输出有哪些物体,并输出物体具体在什么位置
YoLo就是单阶段目标目标检测的一种

2、YOLO核心思想

将目标检测原始检测方法重构为回归问题,将目标图像像素预测为目标类别及其边界框属性,即目标检测框中心点(x,y),检测框宽高(w,h),置信度。

二 、为什么使用YOLO,优势是什么?

YOLO系列模型优势:

  1. 速度优势:YOLO的核心设计是单阶段检测,直接从图像中预测目标的类别和位置,无需复杂的候选区域生成步骤,因此速度极快,适合实时应用。
  2. 轻量化设计:YOLO的网络结构相对简单,计算量小,适合在资源受限的设备(如嵌入式系统、智能手机)上运行。
  3. 精度与速度的平衡:尽管YOLO以速度著称,但其检测精度也相当高。YOLOv3、YOLOv4、YOLOv5等版本通过改进网络结构和训练方法,进一步提升了检测精度。
  4. 易于部署:YOLO的代码开源,社区活跃,有大量的教程和资源可供参考。它支持多种操作系统和硬件平台,易于部署。
  5. 灵活性和可扩展性:YOLO的网络结构和训练流程具有较高的可定制性,开发者可以根据具体需求调整模型的超参数、网络结构和损失函数。
  6. 对小目标的检测能力:YOLOv3引入了多尺度预测,YOLOv8采用无锚点设计,进一步提升了对小目标的检测能力。
  7. 对复杂场景的适应性:YOLO在复杂背景和遮挡情况下表现出较强的抗干扰性,能够准确检测被部分遮挡的目标。

三、怎么使用YOLO模型?

YOLO模型使用方法:
1、准备代码和环境

  • 下载YOLO模型的代码库
  • 安装必要依赖
  • 将预训练权重文件拷贝到工程目录下

2、准备数据集
3、模型训练(创建训练脚本,并指定训练参数)
4、模型预测(创建预测脚本,加载训练好的权重文件,并指定要检测的图像路径)

具体操作可参考:YoLo运用学习1


总结

目前对YOLO模型理论知道的简单了解,知道了YOLO模型是什么?为什么?怎么用?。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值