在 AI 技术飞速发展的当下,各种智能对话系统、问答工具逐渐融入我们的生活和工作。你可能会好奇,为什么有些 AI 能精准回答专业领域的问题,还能引用最新信息,而有些却常常 “一本正经地胡说八道”?这背后,检索增强生成(RAG)技术扮演着关键角色。它就像给 AI 装上了一个 “外挂知识库”,让 AI 在回答问题时既聪明又靠谱。
一、什么是检索增强生成(RAG)?
简单来说,检索增强生成(RAG)是一种结合了 “检索” 和 “生成” 两种能力的 AI 技术。
想象一下,当你向 AI 提问时:
-
“生成” 部分就像 AI 自带的 “大脑”,能根据已有的知识储备组织语言、形成回答;
-
“检索” 部分则像 AI 的 “搜索引擎”,会先从外部知识库(比如企业文档、行业报告、最新新闻等)中精准找到与问题相关的信息,再把这些信息 “喂” 给 “生成” 部分。
最终,AI 会基于检索到的真实信息来回答问题,而不是单纯依赖训练时学到的 “旧知识”。打个比方,RAG 就像让学生答题时既能用课本知识,又能查阅最新的参考书,答案自然更准确、更贴合实际。
二、RAG 的组成:三大核心模块
RAG 的工作流程可以拆解为三个关键部分,就像一条高效运转的 “信息流水线”:
1. 知识库:AI 的 “参考书库”
这是 RAG 的 “弹药库”,存储着企业或用户提供的专业数据,比如产品手册、法律条文、历史对话记录、行业论文等。这些数据需要经过处理(比如清洗、分类、格式转换),变成 AI 能理解的形式(通常是 “向量”,一种数字编码),才能被快速检索。
2. 检索模块:AI 的 “智能搜索器”
当收到用户提问时,检索模块会先把问题转换成向量,然后在知识库中 “扫描”,找到与问题最相关的信息片段。它就像一个精准的图书管理员,能在海量书籍中迅速抽出几本最贴合你需求的书。
检索的关键是 “相关性”—— 比如你问 “2024 年新能源汽车补贴政策”,检索模块会优先找出 2024 年的政策文件,而不是 5 年前的旧资料。
3. 生成模块:AI 的 “智能写手”
拿到检索到的信息后,生成模块(通常是大语言模型,如 GPT、LLaMA 等)会对这些信息进行理解、整合和加工,用自然语言组织成流畅的回答。它不仅会引用知识库中的关键内容,还会根据上下文逻辑补充细节,让回答既专业又易懂。
三、RAG 的作用原理:三步让 AI 回答更靠谱
RAG 的工作过程可以简化为 “提问→检索→生成” 三个步骤,环环相扣:
-
用户提问:比如 “我们公司的产品 A 在 2025 年的保修政策是什么?”
-
检索匹配:
-
系统将问题转换成向量,与知识库中产品 A 的保修条款、2025 年更新说明等文档的向量进行比对;
-
快速筛选出最相关的 2-3 份文档片段(比如 “产品 A 整机保修 2 年,核心部件保修 5 年,2025 年起新增电池延保服务”)。
- 生成回答:
-
生成模块基于检索到的信息,用自然语言总结:“公司产品 A 在 2025 年的保修政策为:整机保修 2 年,核心部件保修 5 年,同时新增电池延保服务。”
-
整个过程中,AI 不会凭空编造信息,所有结论都能追溯到知识库中的原始资料。
四、RAG 的核心价值:解决 AI 的 “痛点”
为什么需要 RAG?因为传统大语言模型有两个明显的局限:
-
知识滞后:训练数据截止到某个时间点,无法获取最新信息(比如 2023 年训练的模型不知道 2025 年的政策);
-
容易 “幻觉”:面对陌生问题时,可能会编造看似合理但错误的答案(比如乱编产品参数、混淆政策条款)。
而 RAG 通过 “检索 + 生成” 的结合,完美弥补了这些不足:
-
信息实时性:知识库可以随时更新,让 AI 总能调用最新数据(比如企业新发布的规章制度、行业刚出台的新规);
-
回答准确性:所有结论都基于真实文档,减少 “幻觉”,尤其适合专业领域(如法律、医疗、企业内部问答);
-
知识可控性:企业可以通过管理知识库,确保 AI 只输出符合自身需求的内容(比如只引用公司内部资料,避免泄露敏感信息)。
结尾
检索增强生成(RAG)就像给 AI 装上了 “精准导航” 和 “实时数据库”,让它在回答问题时既有大语言模型的流畅表达能力,又有检索系统的信息准确性。无论是企业用它搭建内部智能问答平台,还是开发者优化对话机器人,RAG 都能让 AI 更 “靠谱”、更 “实用”。随着技术的发展,RAG 还会不断升级,成为连接 AI 与真实世界信息的重要桥梁,让智能工具真正融入我们的工作和生活。
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!