从基础到应用:算力、算法、数据、大模型与智能体(Agent)的关系深度剖析

近两年,新兴的专业术语如雨后春笋般冒出,稍不留意就可能听不懂别人在聊什么。比如前些年常提的IOT(物联网),如今讨论度不低的3DGS(三维高斯溅泼,全称比较复杂,这里就不展开了)、AIGC(人工智能生成内容),以及最近热度居高不下的Agent(智能体)。为了跟上时代的步伐,我特意恶补了相关知识,内容多是对AI领域现有结论的梳理总结,若有理解不当之处,还请大家指正!

请添加图片描述

核心概念解析

算力(Computing Power):指CPU、GPU等计算设备的处理能力,是数据运算和算法执行的硬件基础,为整个AI系统的运行提供动力支撑。

算法(Algorithm):是解决特定问题的一系列规则和步骤,是一种抽象的逻辑指导方法,不依附于具体的硬件设备。像机器学习中的决策树算法、聚类算法等都属于算法的范畴。

大模型(Large Model):基于深度学习技术构建的大规模参数模型,参数规模通常从数十亿到数万亿不等。它通过对海量数据的训练,具备了强大的复杂认知和处理能力,本质上是算法在工程层面的规模化实现。

数据(Data):是计算机可处理的各类信息的载体,涵盖结构化数据(如Excel表格中的数据)和非结构化数据(如音频、邮件、动画等)。数据是训练大模型的“粮食”,其数量多少和质量高低对模型的最终效果有着直接且重要的影响。

智能体(Intelligent Agent):是能够感知周围环境、自主做出决策并采取行动的系统,简单来说就是“有智能的行动者”。它将算力、算法、大模型和数据整合在一起,通过与外界的互动来达成特定的目标,例如智能客服就是一种常见的智能体。
请添加图片描述

看到这里,你可能会觉得,这些内容通过搜索也能轻松获取。

那我们就用“厨房做饭”这个场景来类比说明,帮助大家更好地理解。

在这里插入图片描述

算力:相当于厨房的“能源支持”

比如 electricity、天然气等能源,它们是做饭过程中不可或缺的动力来源。做饭速度的快慢,很大程度上取决于火力的大小,这就如同服务器等设备所提供的计算能力,为算法的运行和模型的推理提供着有力支撑。

算法:就像做饭用的“菜谱”

例如做番茄炒蛋的步骤(切番茄→打鸡蛋→热油→炒鸡蛋→盛出→炒番茄→加调料→倒入鸡蛋→翻炒出锅),这一系列步骤等同于算法所规定的逻辑流程,它明确了模型处理数据的具体方式。

大模型:好比厨师长脑中的“烹饪经验库”

一位经验丰富的厨师长,不仅记得成百上千道菜的做法、食材的搭配秘诀,还能根据现有的食材创造出新的菜式。这就如同大模型通过对海量数据的“学习”,具备了强大的通用语言理解能力和任务处理能力。

数据:类似于各种“食材”

比如做蛋糕需要的面粉、鸡蛋、牛奶,这些食材的品质和新鲜度直接影响着蛋糕的口感和质量。没有食材,再好的菜谱和厨师经验也无法施展,就像没有数据,算法和大模型便无法得到验证和“学习”。

智能体:相当于实际“下厨做饭的人”

通常情况下,厨师长主要负责指导,不会亲自下厨,而负责执行的人则需要根据菜谱和厨师长的经验,动手切菜、炒菜,并且在过程中自主判断火候、调整步骤(比如发现菜有点咸了就加些水稀释)。这就像智能体(如智能烹饪机器人),它调用大模型的“经验”,结合实时的环境信息(如用户的口味要求、食材的剩余量)来执行具体的烹饪任务。

请添加图片描述

从厨房的类比中可以看出,一个成功的AI系统,不仅依赖于算力、算法、大模型、智能体这些核心技术,还需要数据、工程化水平、用户体验等多个环节的协同配合,任何一个环节的缺失都可能影响整个系统的效果。而智能体所带来的交互体验与我们的生活更为贴近,如果把大模型比作汽车的“发动机”,它决定了汽车能跑多快、燃油效率如何(即模型的知识能力强弱),那么智能体就是“驾驶员”,它会根据目的地(用户需求)规划行驶路线、控制油门和刹车(调用工具、执行操作)。二者的核心区别在于,发动机没有自主意识,不会自己决定去向;而驾驶员则需要依靠发动机提供的动力,主动选择行驶的方向和方式。 此外,智能体还能像经验丰富的驾驶员应对突发路况一样,在处理任务时灵活应对各种意外情况,进一步提升了AI系统的实用性和可靠性。

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!