收藏学习 | 手把手教你搭建医疗问答系统:Qwen2微调+RAG检索增强实战

手把手搭建医疗问答系统:Qwen2+RAG实战

该项目基于Qwen2+Agent+RAG构建医疗问答系统,结合SFT+DPO微调技术提升医学专业性,通过FAISS知识库和KNN算法增强检索准确性,支持FastLLM/VLLM双引擎推理。系统提供可解释的医疗建议,应用于辅助诊断、医学教育和科研支持,具有垂直领域深度优化、可解释性强、部署灵活等优势,为医疗行业提供低成本高可用的AI解决方案。


开源项目介绍:基于Qwen2+Agent+RAG的医疗问答系统

项目定位:一个结合大语言模型(Qwen2)、微调技术(SFT+DPO)、检索增强生成(RAG)的垂直领域医疗问答系统,专注于西医疾病诊疗场景,旨在提供精准、可解释的医学建议。


核心技术与实现路径

  1. 模型微调
  • 基于LLaMA-Factory的DPO(社区方案)

  • 手动编写的DPOTrainer

    (项目特色,与TRL库不同,更适配医疗场景)。

  • SFT(监督微调)

    :基于HuggingFace的Trainer框架,使用西医诊疗数据(如病历、指南、医学文献)微调Qwen2模型,使其具备医学问答能力。

  • DPO(直接偏好优化)

    :通过对比优质回答与低质回答(如错误诊断、模糊建议),优化模型输出质量。提供两种实现:

  1. RAG(检索增强生成)
  • 知识库构建

    :使用FAISS(高效相似度搜索库)构建本地医疗知识库,存储结构化医学文本(如疾病描述、治疗方案)。

  • 文档匹配

    :在RAG流程中引入KNN算法(补充传统相似度、BM25、L2距离方法),提升检索准确性。

  • 回答生成

    :将模型原始回答与知识库中匹配的Top-k文本拼接,增强回答的事实依据可解释性

  1. 推理加速
  • FastLLM

    (C++库,低延迟、高吞吐量,适合本地部署)。

  • VLLM

    (高性能GPU推理,支持大规模并发请求)。

  • 支持两种推理引擎:

  1. 架构参考
  • 借鉴LongChain-Chatchat的框架设计,包括模型加载(Ollama/XInference)、推理流程等。
  • 在中文医疗问答数据集(Chinese-MedQA)上优化匹配算法,提升中文医学术语处理能力。

应用场景与价值

1. 医疗辅助诊断
  • 患者端

    :提供症状自查、初步诊断建议(需明确“非替代医生”的免责声明)。

  • 医生端

    :辅助快速检索疾病信息、治疗方案,减少重复性劳动。

  • 价值

    :缓解医疗资源不均衡问题,尤其在基层医疗场景中降低误诊率。

2. 医学教育与知识普及
  • 为医学生或普通用户提供结构化医学知识(如疾病定义、药物相互作用)。

  • 价值

    :降低医学知识获取门槛,提升公众健康素养。

3. 医疗科研支持
  • 快速检索文献、临床试验数据,辅助研究者分析疾病模式或药物效果。

  • 价值

    :加速科研流程,减少人工文献筛选时间。

4. 技术创新点
  • 垂直领域微调

    :通过SFT+DPO针对性优化医学问答能力,避免通用模型的“幻觉”问题。

  • 混合检索策略

    :结合KNN、BM25等算法,提升复杂医学问题的检索精度。

  • 轻量化部署

    :支持FastLLM/VLLM双引擎,适配不同硬件环境(如医院服务器或云平台)。


项目优势与差异化

  1. 垂直领域深度优化

  • 相比通用问答系统(如ChatGPT),更聚焦西医诊疗场景,回答更专业、可靠。
  1. 可解释性增强

  • 通过RAG拼接知识库文本,用户可追溯回答依据,符合医疗行业对透明度的要求。
  1. 灵活的技术栈

  • 支持模型替换(如调用智谱API替代微调模型)、推理引擎切换,降低部署门槛。

适用人群与部署建议

  • 开发者

    :可基于项目框架快速构建医疗问答应用,或扩展至其他垂直领域(如法律、金融)。

  • 医疗机构

    :需结合本地知识库和合规审查,确保回答符合临床指南。

  • 云服务提供商

    :可集成VLLM推理加速,提供SaaS化医疗问答服务。

总结:该项目通过模型微调、RAG检索和高效推理,为医疗领域提供了一套低成本、高可用、可解释的AI问答解决方案,具有显著的社会价值与商业潜力。

读者福利大放送:如果你对大模型感兴趣,想更加深入的学习大模型**,那么这份精心整理的大模型学习资料,绝对能帮你少走弯路、快速入门**

如果你是零基础小白,别担心——大模型入门真的没那么难,你完全可以学得会

👉 不用你懂任何算法和数学知识,公式推导、复杂原理这些都不用操心;
👉 也不挑电脑配置,普通家用电脑完全能 hold 住,不用额外花钱升级设备;
👉 更不用你提前学 Python 之类的编程语言,零基础照样能上手。

你要做的特别简单:跟着我的讲解走,照着教程里的步骤一步步操作就行。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

现在这份资料免费分享给大家,有需要的小伙伴,直接VX扫描下方二维码就能领取啦😝↓↓↓
在这里插入图片描述

为什么要学习大模型?

数据显示,2023 年我国大模型相关人才缺口已突破百万,这一数字直接暴露了人才培养体系的严重滞后与供给不足。而随着人工智能技术的飞速迭代,产业对专业人才的需求将呈爆发式增长,据预测,到 2025 年这一缺口将急剧扩大至 400 万!!
在这里插入图片描述

大模型学习路线汇总

整体的学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战,跟着学习路线一步步打卡,小白也能轻松学会!
在这里插入图片描述

大模型实战项目&配套源码

光学理论可不够,这套学习资料还包含了丰富的实战案例,让你在实战中检验成果巩固所学知识
在这里插入图片描述

大模型学习必看书籍PDF

我精选了一系列大模型技术的书籍和学习文档(电子版),它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。
在这里插入图片描述

大模型超全面试题汇总

在面试过程中可能遇到的问题,我都给大家汇总好了,能让你们在面试中游刃有余
在这里插入图片描述

这些资料真的有用吗?

这份资料由我和鲁为民博士(北京清华大学学士和美国加州理工学院博士)共同整理,现任上海殷泊信息科技CEO,其创立的MoPaaS云平台获Forrester全球’强劲表现者’认证,服务航天科工、国家电网等1000+企业,以第一作者在IEEE Transactions发表论文50+篇,获NASA JPL火星探测系统强化学习专利等35项中美专利。本套AI大模型课程由清华大学-加州理工双料博士、吴文俊人工智能奖得主鲁为民教授领衔研发。

资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的技术人员,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。
在这里插入图片描述
👉获取方式

😝有需要的小伙伴,可以保存图片到VX扫描下方二维码免费领取【保证100%免费】
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最适合零基础的!!

### Qwen2-VL与RAG集成及其使用信息 Qwen2-VL是一种多模态预训练模型,能够处理图像和文本数据并从中提取特征[^1]。该模型通过联合学习视觉和语言表示,在多种跨模态任务上表现出色。 为了增强基于Qwen2-VL的应用程序的能力,可以将其与检索增强生成(Retrieval-Augmented Generation, RAG)技术相结合。RAG利用外部知识库来提高自然语言生成的质量和准确性[^2]。具体来说,当接收到输入查询时,系统会先从大型文档集合中检索最相关的片段作为上下文线索,再由生成器根据这些额外信息构建更精确的回答。 #### 集成方法概述 实现这种组合通常涉及以下几个方面: - **索引建立**:创建一个高效的倒排文件或其他形式的数据结构用于快速定位潜在有用的资料源; - **相似度计算**:采用合适的算法衡量候选材料同原始请求之间的语义距离; - **融合机制设计**:定义如何将来自不同渠道的知识点拼接到一起形成连贯一致的结果串流。 下面给出一段Python伪代码展示了一个简单的框架实例,展示了上述组件是如何协同工作的: ```python from transformers import RagRetriever, RagTokenForGeneration, AutoTokenizer def initialize_qwen_rag_model(): retriever = RagRetriever.from_pretrained("facebook/rag-token-nq") # 使用预训练好的RAG检索器 generator = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever) tokenizer = AutoTokenizer.from_pretrained("facebook/rag-token-nq") return generator, tokenizer def generate_response(query_text): model, tokenizer = initialize_qwen_rag_model() inputs = tokenizer([query_text], return_tensors="pt") generated_ids = model.generate(input_ids=inputs["input_ids"]) response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) return response[0] print(generate_response("What is the capital of France?")) ``` 此段代码初始化了一个基于Facebook开源项目的RAG模型,并演示了如何针对给定的题生成答案。对于特定于Qwen2-VL的任务,则需替换相应的模块以适应具体的业务需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值