该项目基于Qwen2+Agent+RAG构建医疗问答系统,结合SFT+DPO微调技术提升医学专业性,通过FAISS知识库和KNN算法增强检索准确性,支持FastLLM/VLLM双引擎推理。系统提供可解释的医疗建议,应用于辅助诊断、医学教育和科研支持,具有垂直领域深度优化、可解释性强、部署灵活等优势,为医疗行业提供低成本高可用的AI解决方案。
开源项目介绍:基于Qwen2+Agent+RAG的医疗问答系统
项目定位:一个结合大语言模型(Qwen2)、微调技术(SFT+DPO)、检索增强生成(RAG)的垂直领域医疗问答系统,专注于西医疾病诊疗场景,旨在提供精准、可解释的医学建议。
核心技术与实现路径
- 模型微调
-
基于LLaMA-Factory的DPO(社区方案)
-
手动编写的DPOTrainer
(项目特色,与TRL库不同,更适配医疗场景)。
-
SFT(监督微调)
:基于HuggingFace的Trainer框架,使用西医诊疗数据(如病历、指南、医学文献)微调Qwen2模型,使其具备医学问答能力。
-
DPO(直接偏好优化)
:通过对比优质回答与低质回答(如错误诊断、模糊建议),优化模型输出质量。提供两种实现:
- RAG(检索增强生成)
-
知识库构建
:使用FAISS(高效相似度搜索库)构建本地医疗知识库,存储结构化医学文本(如疾病描述、治疗方案)。
-
文档匹配
:在RAG流程中引入KNN算法(补充传统相似度、BM25、L2距离方法),提升检索准确性。
-
回答生成
:将模型原始回答与知识库中匹配的Top-k文本拼接,增强回答的事实依据和可解释性。
- 推理加速
-
FastLLM
(C++库,低延迟、高吞吐量,适合本地部署)。
-
VLLM
(高性能GPU推理,支持大规模并发请求)。
-
支持两种推理引擎:
- 架构参考
- 借鉴LongChain-Chatchat的框架设计,包括模型加载(Ollama/XInference)、推理流程等。
- 在中文医疗问答数据集(Chinese-MedQA)上优化匹配算法,提升中文医学术语处理能力。
应用场景与价值
1. 医疗辅助诊断
-
患者端
:提供症状自查、初步诊断建议(需明确“非替代医生”的免责声明)。
-
医生端
:辅助快速检索疾病信息、治疗方案,减少重复性劳动。
-
价值
:缓解医疗资源不均衡问题,尤其在基层医疗场景中降低误诊率。
2. 医学教育与知识普及
-
为医学生或普通用户提供结构化医学知识(如疾病定义、药物相互作用)。
-
价值
:降低医学知识获取门槛,提升公众健康素养。
3. 医疗科研支持
-
快速检索文献、临床试验数据,辅助研究者分析疾病模式或药物效果。
-
价值
:加速科研流程,减少人工文献筛选时间。
4. 技术创新点
-
垂直领域微调
:通过SFT+DPO针对性优化医学问答能力,避免通用模型的“幻觉”问题。
-
混合检索策略
:结合KNN、BM25等算法,提升复杂医学问题的检索精度。
-
轻量化部署
:支持FastLLM/VLLM双引擎,适配不同硬件环境(如医院服务器或云平台)。
项目优势与差异化
-
垂直领域深度优化
:
- 相比通用问答系统(如ChatGPT),更聚焦西医诊疗场景,回答更专业、可靠。
-
可解释性增强
:
- 通过RAG拼接知识库文本,用户可追溯回答依据,符合医疗行业对透明度的要求。
-
灵活的技术栈
:
- 支持模型替换(如调用智谱API替代微调模型)、推理引擎切换,降低部署门槛。
适用人群与部署建议
-
开发者
:可基于项目框架快速构建医疗问答应用,或扩展至其他垂直领域(如法律、金融)。
-
医疗机构
:需结合本地知识库和合规审查,确保回答符合临床指南。
-
云服务提供商
:可集成VLLM推理加速,提供SaaS化医疗问答服务。
总结:该项目通过模型微调、RAG检索和高效推理,为医疗领域提供了一套低成本、高可用、可解释的AI问答解决方案,具有显著的社会价值与商业潜力。
读者福利大放送:如果你对大模型感兴趣,想更加深入的学习大模型**,那么这份精心整理的大模型学习资料,绝对能帮你少走弯路、快速入门**
如果你是零基础小白,别担心——大模型入门真的没那么难,你完全可以学得会!
👉 不用你懂任何算法和数学知识,公式推导、复杂原理这些都不用操心;
👉 也不挑电脑配置,普通家用电脑完全能 hold 住,不用额外花钱升级设备;
👉 更不用你提前学 Python 之类的编程语言,零基础照样能上手。
你要做的特别简单:跟着我的讲解走,照着教程里的步骤一步步操作就行。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
现在这份资料免费分享给大家,有需要的小伙伴,直接VX扫描下方二维码就能领取啦😝↓↓↓
为什么要学习大模型?
数据显示,2023 年我国大模型相关人才缺口已突破百万,这一数字直接暴露了人才培养体系的严重滞后与供给不足。而随着人工智能技术的飞速迭代,产业对专业人才的需求将呈爆发式增长,据预测,到 2025 年这一缺口将急剧扩大至 400 万!!
大模型学习路线汇总
整体的学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战,跟着学习路线一步步打卡,小白也能轻松学会!
大模型实战项目&配套源码
光学理论可不够,这套学习资料还包含了丰富的实战案例,让你在实战中检验成果巩固所学知识
大模型学习必看书籍PDF
我精选了一系列大模型技术的书籍和学习文档(电子版),它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。
大模型超全面试题汇总
在面试过程中可能遇到的问题,我都给大家汇总好了,能让你们在面试中游刃有余
这些资料真的有用吗?
这份资料由我和鲁为民博士(北京清华大学学士和美国加州理工学院博士)共同整理,现任上海殷泊信息科技CEO,其创立的MoPaaS云平台获Forrester全球’强劲表现者’认证,服务航天科工、国家电网等1000+企业,以第一作者在IEEE Transactions发表论文50+篇,获NASA JPL火星探测系统强化学习专利等35项中美专利。本套AI大模型课程由清华大学-加州理工双料博士、吴文俊人工智能奖得主鲁为民教授领衔研发。
资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的技术人员,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。
👉获取方式:
😝有需要的小伙伴,可以保存图片到VX扫描下方二维码免费领取【保证100%免费】
相信我,这套大模型系统教程将会是全网最齐全 最适合零基础的!!