【Leetcode】938. Range Sum of BST

本文介绍了一种解决LeetCode上二叉搜索树区间和问题的分治算法。通过判断树根节点值是否在给定范围内,递归计算左、右子树中满足条件的节点值之和。算法的时间复杂度为O(n),空间复杂度为O(h)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目地址:

https://leetcode.com/problems/range-sum-of-bst/

给定一棵二叉搜索树,再给定一个范围 [ L , R ] [L,R] [L,R],求这棵树中所有在这个范围里的数的和。

分治法。先判断树根是否在范围里,如果不在,那就直接求解一个子树的结果即可;否则就计算左右子树在范围中的数之和,再加上树根即可。代码如下:

class Solution {
 public:
  int rangeSumBST(TreeNode* root, int low, int high) {
    if (!root) return 0;
    int res = 0;
    if (root->val > low) res = rangeSumBST(root->left, low, high);
    if (root->val < high) res += rangeSumBST(root->right, low, high);
    if (low <= root->val && root->val <= high) res += root->val;
    return res;
  }
};

时间复杂度 O ( n ) O(n) O(n),空间 O ( h ) O(h) O(h)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值