【ACWing】914. 樱桃网

该博客讨论了一道编程题目,涉及到最小生成树的概念。问题要求通过移除某些糖链以降低甜点的总含糖量,同时保持所有樱桃间仍有路径相连。作者提出利用并查集数据结构解决此问题,优先选择黑色糖链(低糖)构建树形结构,若黑色糖链不足,则补充红色糖链(高糖)。通过并查集确保在构建过程中不形成环,并计算最终的最低含糖量。代码实现中,时间复杂度为O(nlog⁡∗n)O(nlog^*n)O(nlog∗n),空间复杂度为O(n)O(n)O(n)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目地址:

https://www.acwing.com/problem/content/916/

你的朋友最近完成了烹饪课的学习,现在他想通过做出一个美味的甜点来在他的同学面前展现他的学习成果。他想出了一种叫樱桃网的甜点。为了制作这道菜,他准备了 N N N个樱桃,依次编号为 1 ∼ N 1∼N 1N。在他的甜点中,任意两个樱桃之间都存在着一条用糖构成的链条,将它们直接互相连接。糖链呈红色或黑色,这取决于它们的含糖量。每条黑色糖链含有一个单位的糖,每条红色糖链含有两个单位的糖。在甜点完成之后,他发现甜点做的太甜了,而他的同学们都不喜欢吃含糖量过高的食物。他现在遇到了困惑,特地向你求助。请你帮助他找出他应该去掉哪些糖链,使得这道菜的每对樱桃之间都能通过糖链直接或间接连接的同时,含糖量能够尽可能的最低?输出这个含糖量的最小值。

输入格式:
第一行包含整数 T T T,表示共有 T T T组测试数据。每组数据第一行包含两个整数 N N N M M M,分别表示樱桃数量以及黑色糖链数量。接下来 M M M行,每行包含两个整数 C i C_i Ci D i Di Di,表示编号为 C i C_i Ci D i D_i Di的两个樱桃之间存在一条黑色糖链。注意:如果任意两个樱桃之间,没有被黑色糖链连接,那么说明它们之间由一条红色糖链连接。

输出格式:
每组数据输出一个结果,每个结果占一行。结果表示为Case #x: y,其中 x x x是组别编号(从 1 1 1开始), y y y为含糖量的最小值。

数据范围:
1 ≤ T ≤ 100 1≤T≤100 1T100
M ≤ N × ( N − 1 ) / 2 M≤N×(N−1)/2 MN×(N1)/2
1 ≤ C i , D i ≤ N 1≤C_i,D_i≤N 1Ci,DiN
C i ≠ D i C_i≠D_i Ci=Di
同一组数据内,所有 { C i , D i } \{C_i,D_i\} {Ci,Di}对都互不相同。
1 ≤ N ≤ 1 0 5 1≤N≤10^5 1N105
0 ≤ M ≤ 1 0 5 0≤M≤10^5 0M105

显然是最小生成树问题。由于黑色链的糖分低,所以我们尽量先取黑色边,用并查集做测试,每次取边的时候保证不含环。最后如果没有取够 n − 1 n-1 n1条边,那么剩余边就取红色。代码如下:

#include <iostream>
using namespace std;

const int N = 1e5 + 10;
int n, m;
int p[N];

int find(int x) {
    if (p[x] != x) p[x] = find(p[x]);
    return p[x];
}

int main() {
    int T;
    scanf("%d", &T);
    for (int k = 1; k <= T; k++) {
        scanf("%d%d", &n, &m);
        for (int i = 1; i <= n; i++) p[i] = i;
        int res = 0;
        for (int i = 1; i <= m; i++) {
            int x, y;
            scanf("%d%d", &x, &y);
            int px = find(x), py = find(y);
            if (px != py) {
                p[px] = py;
                res++;
            }
        }

        res += (n - 1 - res) * 2;
        printf("Case #%d: %d\n", k, res);
    }

    return 0;
}

每组数据时间复杂度 O ( n log ⁡ ∗ n ) O(n\log^*n) O(nlogn),空间 O ( n ) O(n) O(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值