HDU-1232-畅通工程
Description
某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路?
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是城镇数目N ( < 1000 )和道路数目M;随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的两个城镇的编号。为简单起见,城镇从1到N编号。
注意:两个城市之间可以有多条道路相通,也就是说
3 3
1 2
1 2
2 1
这种输入也是合法的
当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最少还需要建设的道路数目。
Sample Input
4 2
1 3
4 3
3 3
1 2
1 3
2 3
5 2
1 2
3 5
999 0
0
Sample Output
1
0
2
998
Hint
Huge input, scanf is recommended.
题意
- 先输入N和M代表有N个城市M条道路
- 然后输入M组x和y,说明x和y之间有路联通
- 两座城市之间允许有多条路,也就是允许输入相同的x和y
- 输出N座城市间均能相通至少还要修多少条路
- 相通只要能走到就行,不一定直接相通,通过某些城市中转也可
- 注意有多组输入,且以N==0结束
题解
- 这题是一个并查集的基础板子题,套用模板输入输出即可
- N座城市都相通,可以看做大家都在一个集合里面
- x和y城市之间有路,可以看做x和y在一个集合里面
- 现在有多少地方相通,就用模板的baba函数让它们结成同一集合
- 最后分成几个大集合无法再合并,就有几个大集合之间不相通
- 要让所有城市相通,只要让这几个大集合相通即可
- n个集合至少靠n-1条路就能修成一个大集合,使所有城市相通
- 所以只要让某些城市做祖先,遍历所有城市,找到他们的祖先并标记对应flag数组为1
- flag数组初始化全部是0
- 再用sum初始化0遍历所有城市,找到flag为1的sum就++,由此算出n个集合
- 最后输出sum-1即可啦
- 勿忘while(~scanf("%d",&n))和if(n==0) break喔
涉及知识点
- 并查集 算法
- 对于并查集的算法-详见链接博客介绍并查集
模板
typedef long long ll;
const int maxn=1010;
int father[maxn];
int n=1000;
void init()//初始化自己的爸爸是自己
{
for(int i=1;i<=n;i++)
{
father[i]=i;
}
}
int find(int x)//完成"查"的功能,找自己的祖先,同时可以用于if判断是否同祖先为亲人
{
return x==father[x]?x:father[x]=find(father[x]);//返回的是x或者递归继续
/*
?:是三目运算符
如果x的祖先就是自己,那就终止,x==x;
如果x的祖先不是自己,我的爸爸就变成祖先
因为find终止的时候是找到祖先
那么一层一层递归回来x的一系列爸爸爷爷都等于了他们的祖先
这个时候找到了x的祖先,同时也进行了 【路径压缩】
一个长链也会被压缩成菊花图(两层)
*/
}
void baba(int x,int y)//完成"并"的功能,让两个人做亲人
{
int fx=find(x);
int fy=find(y);
/*
if(fx!=fy) father[fx]=fy;
但没什么意义,如果==father[fx]也会等于find(x)
find函数之后整条链都等于祖先了
所以可以直接变为下面的代码(等于的时候再自己等于操作一次而已)
*/
father[fx]=fy;//拜把子认爸爸->让自己的祖先和别人的爸祖先拜把子
}
AC代码
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<iostream>
#include<vector>
#include<set>
#include<algorithm>
using namespace std;
const int maxn=1010;
int father[maxn];
int n=1010;
void init()
{
for(int i=1;i<=n;i++)
{
father[i]=i;
}
}
int find(int x)
{
return x==father[x]?x:father[x]=find(father[x]);
}
void baba(int x,int y)
{
int fx=find(x);
int fy=find(y);
father[fx]=fy;
}
int main()
{
int n,m,x,y,flag[1010];
while(~scanf("%d",&n))
{
if(n==0) break;
else scanf("%d",&m);
init();
memset(flag,0,sizeof(flag));
for(int j=0;j<m;j++)
{
scanf("%d %d",&x,&y);
baba(x,y);
}
for(int j=1;j<=n;j++)
{
flag[find(j)]=1;
}
int sum=0;
for(int j=1;j<=n;j++)
{
if(flag[j]==1) sum++;
}
printf("%d\n",sum-1);
}
return 0;
}