狄克斯特拉(Dijkstra)算法python实现

本文详细介绍了狄克斯特拉(Dijkstra)算法的工作原理,通过实例演示如何在图中寻找两点之间的最短路径,包括置定节点和未置定节点的处理,以及每次迭代中距离的更新过程。最后给出了Python代码实现及运行结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

狄克斯特拉(Dijkstra)算法

1.算法原理

已知图G=(V,E)G=(V,E)G=(V,E),将其节点集分为两组:置定节点集GpG_pGp和未置定节点集G−GpG-G_pGGp。其中GpG_pGp内的所有置定节点,是指定点vsv_svs到这些节点的路径为最短(即已完成最短路径的计算)的节点。而G−GpG-G_pGGp内的节点是未置定节点,即vsv_svs到未置定节点距离是暂时的,随着算法的下一步将进行不断调整,使其成为最短径。

在调整各未置定节点的最短径时,是将GpG_pGp中的节点作为转接点。具体地说,就是将GpG_pGp中的节点作为转接点,计算(vs,vj)(v_s ,v_j)(vs,vj)的径长(vj∈G−Gp)(v_j\in G-G_p)(vjGGp),若该次计算的径长小于上次的值,则更新径长,否则,径长不变。计算后取其中径长最短者,之后将vjv_jvj划归到GpG_pGp中。当(G−Gp)(G-G_p)(GGp)最终成为空集,同时Gp=GG_p=GGp=G,即求得vsv_svs到所有其他节点的最短路径。

2.举例

如图

在这里插入图片描述

首先写出它的邻接矩阵,由于默认不考虑自环(即一个点有一条路径连接自己)的情况,所以规定一个点到它自己的距离为0,同时规定两个点之间如果无法直接到达则距离为∞\infin
(0251∞∞2032∞∞53031512301∞∞∞1102∞∞5∞20) \begin{pmatrix} 0 & 2 & 5 & 1 & \infin & \infin \\ 2 & 0 & 3 & 2 & \infin & \infin \\ 5 & 3 & 0 & 3 & 1 & 5 \\ 1 & 2 & 3 & 0 & 1 & \infin \\ \infin & \infin & 1 & 1 & 0 & 2 \\ \infin & \infin & 5 & \infin & 2 & 0 \end{pmatrix} 02512032530315123011102520
现计算节点v1v_1v1到其他节点的最短路径

初始时,置定节点集Gp={}G_p=\{\}Gp={},未置定节点集G−GP={v1,v2,v3,v4,v5,v6}G-G_P=\{v_1,v_2,v_3,v_4,v_5,v_6\}GGP={v1,v2,v3,v4,v5,v6}

先用一张表格总览一下整个迭代过程

迭代次数v1,v2,v3,v4,v5,v6v_1,v_2,v_3,v_4,v_5,v_6v1,v2,v3,v4,v5,v6置定节点wiw_iwiGpG_pGp
0(0251∞∞)\begin{pmatrix}0 & 2 & 5 & 1 & \infin & \infin\end{pmatrix}(0251)v1v_1v1w1=0w_1=0w1=0{v1}\{v_1\}{v1}
1(251∞∞)\begin{pmatrix}& & 2 & 5 & 1 & \infin & \infin\end{pmatrix}(251)v4v_4v4w4=1w_4=1w4=1{v1,v4}\{v_1,v_4\}{v1,v4}
2(242∞)\begin{pmatrix}& & 2 & 4 & & & 2 & \infin\end{pmatrix}(242)v2v_2v2w2=2w_2=2w2=2{v1,v4,v2}\{v_1,v_4,v_2\}{v1,v4,v2}
3(42∞)\begin{pmatrix}& & & & 4 & & & 2 & \infin\end{pmatrix}(42)v5v_5v5w5=2w_5=2w5=2{v1,v4,v2,v5}\{v_1,v_4,v_2,v_5\}{v1,v4,v2,v5}
4(34)\begin{pmatrix}& & & & 3 & & & & & 4\end{pmatrix}(34)v3v_3v3w3=3w_3=3w3=3{v1,v4,v2,v5,v3}\{v_1,v_4,v_2,v_5,v_3\}{v1,v4,v2,v5,v3}
5(4)\begin{pmatrix}& & & & & & & & & & 4\end{pmatrix}(4)v6v_6v6w6=4w_6=4w6=4{v1,v4,v2,v5,v3,v6}\{v_1,v_4,v_2,v_5,v_3,v_6\}{v1,v4,v2,v5,v3,v6}

具体过程描述如下:

  1. 第0次迭代:(0251∞∞)\begin{pmatrix}0 & 2 & 5 & 1 & \infin & \infin\end{pmatrix}(0251)
    • 看矩阵的第一行,它表示节点v1v_1v1到其他节点的距离,选择其中最小的一个。
    • 显然v1v_1v1到自身距离最短,为0。所以把v1v_1v1加入置定节点集,同时移出未置定节点集,Gp={v1}G_p=\{v_1\}Gp={v1}G−GP={v2,v3,v4,v5,v6}G-G_P=\{v_2,v_3,v_4,v_5,v_6\}GGP={v2,v3,v4,v5,v6},并记录下v1v_1v1v1v_1v1的距离w1=0w_1=0w1=0
  2. 第1次迭代:(251∞∞)\begin{pmatrix}& & 2 & 5 & 1 & \infin & \infin\end{pmatrix}(251)
    • 由于Gp={v1}G_p=\{v_1\}Gp={v1},只有一个节点v1v_1v1,还是看第一行,但去掉第一列,找最小的数。
    • 显然是v1v_1v1v4v_4v4距离最小,w4=1w_4=1w4=1。所以把v4v_4v4加入置定节点集,同时移出未置定节点集,此时Gp={v1,v4}G_p=\{v_1,v_4\}Gp={v1,v4}G−GP={v2,v3,v5,v6}G-G_P=\{v_2,v_3,v_5,v_6\}GGP={v2,v3,v5,v6}
    • 由于我们的GpG_pGp中多了一个节点,也就是说在考虑v1v_1v1到其他节点距离时有了一个中转点v4v_4v4,那么v1v_1v1到其他节点的距离可能会因为这个v4v_4v4的存在而缩短,或者原来v1v_1v1无法直接到达的点现在可以经过v4v_4v4来到达。
      • 原来v1v_1v1v2v_2v2的距离是2,如果经过v4v_4v4再到v2v_2v2距离是4,没有变小,所以不用改;
      • 原来v1v_1v1v3v_3v3的距离是5,如果经过v4v_4v4再到v3v_3v3距离是4(v1v_1v1v4v_4v4的距离是1,v4v_4v4再到v3v_3v3的距离是3)比原来的小了,需要修改;
      • 原来v1v_1v1无法到达v5v_5v5,但经过v4v_4v4后可以到达,距离为2,需修改:
      • 原来v1v_1v1无法到达v6v_6v6,经过v4v_4v4仍无法到达,不用改
    • 至此,v1v_1v1到其他节点的距离被更新为(242∞)\begin{pmatrix}& & 2 & 4 & & & 2 & \infin\end{pmatrix}(242)
  3. 第2次迭代:(242∞)\begin{pmatrix}& & 2 & 4 & & & 2 & \infin\end{pmatrix}(242)
    • 此时Gp={v1,v4}G_p=\{v_1,v_4\}Gp={v1,v4},找最小的数
    • v2v_2v2距离最小,w2=2w_2=2w2=2,把v2v_2v2加入置定节点集,同时移出未置定节点集,此时Gp={v1,v4,v2}G_p=\{v_1,v_4,v_2\}Gp={v1,v4,v2}G−GP={v3,v5,v6}G-G_P=\{v_3,v_5,v_6\}GGP={v3,v5,v6}
    • 此时我们又多了一个中转点v2v_2v2
      • 原来v1v_1v1v3v_3v3距离是4,经过v2v_2v2中转后距离是5,没有变小,不用改;
      • 原来v1v_1v1v5v_5v5距离是2,v2v_2v2无法中转,不用改;
      • 原来v1v_1v1无法到达v6v_6v6,经过v2v_2v2仍无法到达,不用改
    • 至此,v1v_1v1到其他节点的距离更新(其实完全没有更新)为(42∞)\begin{pmatrix}& & & & 4 & & & 2 & \infin\end{pmatrix}(42)
  4. 第3次迭代:(42∞)\begin{pmatrix}& & & & 4 & & & 2 & \infin\end{pmatrix}(42)
    • 找最小
    • v5v_5v5最小,w5=2w_5=2w5=2Gp={v1,v4,v2,v5}G_p=\{v_1,v_4,v_2,v_5\}Gp={v1,v4,v2,v5}G−GP={v3,v6}G-G_P=\{v_3,v_6\}GGP={v3,v6}
    • 又多了一个中转点v5v_5v5
      • 原来v1v_1v1v3v_3v3距离是4,经过v5v_5v5中转后距离是3,变小了,需要修改;
      • 原来v1v_1v1无法到达v6v_6v6,经过v5v_5v5后距离变成4,修改
    • 至此,v1v_1v1到其他节点的距离更新为(34)\begin{pmatrix}& & & & 3 & & & & & 4\end{pmatrix}(34)
  5. 第4次迭代:(34)\begin{pmatrix}& & & & 3 & & & & & 4\end{pmatrix}(34)
    • 找最小
    • v3v_3v3最小,w3=3w_3=3w3=3Gp={v1,v4,v2,v5,v3}G_p=\{v_1,v_4,v_2,v_5,v_3\}Gp={v1,v4,v2,v5,v3}G−GP={v6}G-G_P=\{v_6\}GGP={v6}
    • 又多了一个中转点v3v_3v3
      • 原来v1v_1v1v6v_6v6距离是4,经过v3v_3v3中转后距离是8,没有变小,不用修改
    • 至此,v1v_1v1到其他节点距离更新为(4)\begin{pmatrix}& & & & & & & & & & 4\end{pmatrix}(4)
  6. 第5次迭代:(4)\begin{pmatrix}& & & & & & & & & & 4\end{pmatrix}(4)
    • 找最小
    • w6=4w_6=4w6=4Gp={v1,v4,v2,v5,v3,v6}G_p=\{v_1,v_4,v_2,v_5,v_3,v_6\}Gp={v1,v4,v2,v5,v3,v6}G−GP={}G-G_P=\{\}GGP={}
    • G−GPG-G_PGGP空了,说明找完了,迭代结束

结果如下表所示

节点v1v_1v1v2v_2v2v3v_3v3v4v_4v4v5v_5v5v6v_6v6
最短路径{v1}\{v_1\}{v1}{v1,v2}\{v_1,v_2\}{v1,v2}{v1,v4,v5,v3}\{v_1,v_4,v_5,v_3\}{v1,v4,v5,v3}{v1,v4}\{v_1,v_4\}{v1,v4}{v1,v4,v5}\{v_1,v_4,v_5\}{v1,v4,v5}{v1,v4,v5,v6}\{v_1,v_4,v_5,v_6\}{v1,v4,v5,v6}
径长023124

实现代码:

import copy

# 首先给出邻接矩阵,两个节点之间距离无穷大用-1表示
matrix = [[0, 2, 5, 1, -1, -1],
          [2, 0, 3, 2, -1, -1],
          [5, 3, 0, 3, 1, 5],
          [1, 2, 3, 0, 1, -1],
          [-1, -1, 1, 1, 0, 2],
          [-1, -1, 5, -1, 2, 0]]


def dijkstra(adjacent_matrix):
    # 获取节点数
    node_number = len(adjacent_matrix)

    # 置定节点集
    G_p = []

    # 未置定节点集
    g_p = []

    # 全部的节点集,用数字表示节点
    G = []

    for i in range(node_number):
        G.append(i + 1)
        g_p.append(i + 1)

    # 用一个一维数组表示v_s节点到其他结点的距离,初始时,这个距离就是邻接矩阵的第s行
    s = 1
    distance = copy.deepcopy(adjacent_matrix[s - 1])

    # 记录路径和径长
    path = []
    w = copy.deepcopy(adjacent_matrix[s - 1])

    # 由于从v_s结点开始,路径的起点都是v_s
    for i in range(node_number):
        path.append([s])

    # 开始迭代
    for i in range(node_number):
        # 遍历整个列表,找最小值,初始时假定最小值为最大值
        min_value = max(distance)
        min_index = distance.index(min_value)
        for j in range(len(distance)):
            if 0 <= distance[j] < min_value:
                min_value = distance[j]
                min_index = j
        # 找到索引为min_index的节点是到v_s距离最短的,把他加入G_p中,并从g_p中移除,同时记录下最短距离
        G_p.append(min_index + 1)
        g_p.remove(min_index + 1)
        w[min_index] = min_value
        # -2表示这个点已经被选过了
        distance[min_index] = -2

        # 更新G_p后,需要对distance进行更新
        # 对distance中的每一个数据,当添入新节点后是否有变化
        # 只需考虑g_p中的节点即可
        for j in g_p:
            # 如果索引为min_index的节点可以到达v_j,并且从v_s到min_value再到v_j的距离比原来从v_s到v_j的距离要小
            # 或者原来v_s无法到达v_j
            if adjacent_matrix[min_index][j-1] > 0 and (
                    adjacent_matrix[min_index][j-1] + min_value < distance[j-1]
                    or distance[j-1] == -1):
                distance[j-1] = adjacent_matrix[min_index][j-1] + min_value
                for item in path[min_index]:
                    path[j-1].append(item)
                path[j-1] = list(set(path[j-1]))
                path[j-1].append(min_index+1)

        print("第%d次迭代:" % i, distance, path, w)


dijkstra(matrix)

代码输出结果如下:

'''
迭代次数:[节点选择情况] [最短路径] [所选节点到每个节点的最小距离]
第0次迭代: [-2, 2, 5, 1, -1, -1] [[1], [1], [1], [1], [1], [1]] [0, 2, 5, 1, -1, -1]
第1次迭代: [-2, 2, 4, -2, 2, -1] [[1], [1], [1, 4], [1], [1, 4], [1]] [0, 2, 5, 1, -1, -1]
第2次迭代: [-2, -2, 4, -2, 2, -1] [[1], [1], [1, 4], [1], [1, 4], [1]] [0, 2, 5, 1, -1, -1]
第3次迭代: [-2, -2, 3, -2, -2, 4] [[1], [1], [1, 4, 5], [1], [1, 4], [1, 4, 5]] [0, 2, 5, 1, 2, -1]
第4次迭代: [-2, -2, -2, -2, -2, 4] [[1], [1], [1, 4, 5], [1], [1, 4], [1, 4, 5]] [0, 2, 3, 1, 2, -1]
第5次迭代: [-2, -2, -2, -2, -2, -2] [[1], [1], [1, 4, 5], [1], [1, 4], [1, 4, 5]] [0, 2, 3, 1, 2, 4]
'''
2
1
1
1
2
v1
v2
v4
v5
v3
V6
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值