【阅读文献笔记】Drone-YOLO: An Efficient Neural Network Method for Target Detection in Drone Images

存在的问题

无人机获得的图像与人工捕获的地面图像相比存在显著差异。包括大图像尺寸、小尺寸检测对象、密集分布、重叠实例和影响目标检测有效性的光照不足。

本文改进

1.对YOLOv8模型的颈部组件采用了三层PAFPN结构,并结合了一个使用大规模特征图为小尺寸物体量身定制的检测头。

2.将三明治融合模块集成到颈部上下分支的每一层中。

3.在网络骨干网中,我们采用RepVGG模块作为下采样层,增强了网络学习多尺度特征的能力,并且优于传统的卷积层。

模型架构

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值