轴承表面缺陷检测数据集

  • 该数据集的缺陷类别共为三类,分别包含:擦伤缺陷(cashang),凹槽缺陷(aocao),划痕缺陷(huahen)。
  • 该数据集共5824张JPG图片,标签文件为xml格式,三类缺陷在标签文件中分别命名为:cashang,aocao,huahen。
  • 为了证明真实性,小伙伴如果有意buy,可以在知网查看《改进YOLOX网络的轴承缺陷小目标检测方法》本人的小论文。可能有小伙伴还存在顾虑,都已经用过的数据集是否可以再用,我认为是可以的:
    1)比如网上公开的布匹瑕疵数据集,可以查看知网,数不胜数的人发小论文,所以可以使用,再比如手势识别数据集,用过几十年了。
    2)小伙伴也可以参考我的文章,数据集共5824张图片,而已发表的小论文仅仅使用了不到20张图片,你大可以使用剩余的5800张图片撰写毕业论文以及小论文。
1.数据集展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.检测效果展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.部分数据展示

在这里插入图片描述

4.获得方式

见主页
注:该数据集为手机拍摄,如果buy还可以提供每张为2MB左右的高清图,写小论文和大论文都可以使用。小伙伴也可以发现,网上工业缺陷目标检测的数据集非常少,这份数据集花费我一个月的时间拍摄及打标签,注入了非常大的心血在里面,所以有偿的方式分享给大家,敬请谅解,最后感谢小伙伴的支持~

### 轴承表面缺陷数据集用于机器学习或数据分析 #### 数据集特点与适用场景 轴承表面缺陷检测数据集提供了丰富的标注数据,非常适合用于训练和评估缺陷检测模型[^1]。该数据集涵盖了多种类型的轴承表面缺陷,如磨损、裂纹、剥落等,这些缺陷对于机械系统的可靠性有着至关重要的影响[^2]。 #### 数据集结构与内容 此数据集中包含了大量不同条件下的轴承运行状态记录以及对应的标签信息。具体来说,数据集不仅限于静态图像,还包括振动信号和其他传感器采集的数据,能够全面反映轴承的工作状况及其潜在问题所在。这种多样性使得研究人员可以从多个角度出发来探索最有效的特征提取方式及建模策略。 #### 应用实例——YOLOv5框架的应用 通过YOLOv5框架,可以方便地构建并训练高性能的缺陷检测模型。实验表明,在处理大规模且复杂的工业应用场景时,这种方法展现出了良好的适应性和准确性。为了进一步提升模型表现,建议采用适当的数据增强手段以增加样本间的差异度,进而改善算法的学习效果。 #### 开发背景意义 传统的人工检查方法存在诸多局限性,比如耗时费力且易发生错误等问题;而借助此类精心设计的数据资源,则有助于推动自动化检测技术的发展进程,实现更高效精准的质量控制目标。 ```python import torch from pathlib import Path def load_bearing_defect_dataset(path_to_data: str): """ 加载轴承表面缺陷数据集 参数: path_to_data (str): 数据路径 返回: dataset (torch.utils.data.Dataset): PyTorch Dataset对象 """ data_path = Path(path_to_data) # 假设这里有一个具体的加载逻辑... pass # 实际应用中应替换为真实代码 # 使用示例 dataset = load_bearing_defect_dataset('./bearing_defects') ```
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

勇敢牛牛@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值