CUDA和cuDNN的安装

本文介绍了CUDA和cuDNN的基本概念,NVIDIA的GPU加速平台与深度学习库,提供两种安装方法,以及如何通过代码验证CUDA和cuDNN的安装。还提到可能的版本兼容性问题及其解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考资料:https://zhuanlan.zhihu.com/p/83971195

CUDA和cuDNN介绍

CUDA(ComputeUnified Device Architecture),是显卡厂商NVIDIA推出的运算平台。 CUDA是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。
NVIDIA cuDNN是用于深度神经网络的GPU加速库。它强调性能、易用性和低内存开销。NVIDIA cuDNN可以集成到更高级别的机器学习框架中,如谷歌的Tensorflow、加州大学伯克利分校的流行caffe软件。简单的插入式设计可以让开发人员专注于设计和实现神经网络模型,而不是简单调整性能,同时还可以在GPU上实现高性能现代并行计算。

需要注意的是,CUDA和cuDNN是英伟达显卡对应的,若不是英伟达显卡则不行。
CUDA和cuDNN简单的来说就是再训练深度学习模型的时候用来加速的,CUDA安装后cuDNN也可以不用安装看个人习惯。

安装

nvidia-smi //看其显卡对应的型号的CUDA

在这里插入图片描述

CUDA网址:https://developer.nvidia.com/cuda-toolkit-archive
cuDNN网址:https://developer.nvidia.com/rdp/cudnn-archive
详细的教程看:https://blog.csdn.net/EnochChen_/article/details/127867036
https://blog.csdn.net/m0_66420727/article/details/127824595
有两种安装方法:

  • 就按照上面的进入官网下载安装包安装。
  • 就是进去pytorch官网进行安装。https://pytorch.org/get-started/previous-versions/在官网下载对应版本的CUDA和pytorch。这里下载的是pytorch和CUDA一块下载了。(注意这里下载的pytorch就是GPU版本)

验证

CUDA否安装成功
在这里插入图片描述
检测CUDA能否访问GPU

import torch
torch.cuda.is_available()   # 检查cuda是否可用返回true说明可以
torch.version.cuda          # 查看cuda版本

检测cuDNN能否访问GPU

from torch
torch.backends.cudnn.is_available()  # 检查cudnn是否可用返回true说明可以
torch.backends.cudnn.version()       # 查看cudnn版本

若不能CUDA不能访问GPU可能是pytorch版本和CUDA版本不匹配问题。
这篇文章也不错:https://blog.csdn.net/PSpiritV/article/details/123796341

### 不同操作系统上的 CUDA cuDNN 安装方法 #### Linux 系统下的 CUDA cuDNN 安装 在 Linux 环境下,安装 CUDA cuDNN 的流程如下: 1. **NVIDIA 驱动安装** 确保系统已安装与目标 CUDA 版本兼容的 NVIDIA 显卡驱动。可以通过命令 `nvidia-smi` 检查当前显卡驱动版本以及 GPU 是否正常工作。 2. **CUDA Toolkit 安装** 下载并安装官方提供的完整版 CUDA Toolkit。如果仅用于运行预编译的 CUDA 应用程序(如 PyTorch 中的 cuda toolkit),可以依赖于框架自带的工具包;但如果需要开发自定义扩展,则必须安装完整的 CUDA 工具链[^1]。 3. **cuDNN 安装** - 前往 NVIDIA 官网下载对应 CUDA 版本的 cuDNN 文件压缩包。 - 解压文件并将其中的内容复制到 CUDA 安装目录中的相应位置,通常为 `/usr/local/cuda/include/` `/usr/local/cuda/lib64/`。 4. **环境变量配置** 修改 `.bashrc` 或者其他 shell 初始化脚本,添加以下路径设置: ```bash export PATH=/usr/local/cuda/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH ``` #### Windows 系统下的 CUDA cuDNN 安装 对于 Windows 用户而言,其安装方式略有差异: 1. **NVIDIA 驱动更新** 类似于 Linux 平台,先确认硬件支持情况并通过 GeForce Experience 或手动访问官网获取最新稳定版驱动器软件。 2. **CUDA Toolkit 设置向导模式** 使用图形界面引导完成整个过程更加直观简便。启动安装程序后按照提示逐步选择组件直至结束即可实现基础功能部署。 3. **集成 cuDNN 至现有项目结构里** 同样是从开发者专区取得资源链接地址之后解压至本地磁盘分区根目录下面新建名为 “cuda”的子文件夹内存放头文件(.h)及动态库(.dll/.lib),最后记得同步调整 Visual Studio 开发环境中关于附加包含目录(Additional Include Directories)/库目录(Linker->General->Additional Library Directories)等相关选项参数值指向刚才创建出来的那个特定存储区域。 #### macOS 系统下的 CUDA cuDNN 安装注意事项 由于苹果公司逐渐淘汰对独立显卡的支持,在 Mac 设备上原生启用 CUDA 加速变得越来越困难除非借助虚拟机模拟方案或者通过 Rosetta 转义机制间接达成目的。因此建议优先考虑基于云服务提供商搭建远程计算节点来满足高性能需求场景的应用场合。 ```python import torch print(torch.cuda.is_available()) # 测试是否成功启用了GPU加速特性 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值