04—《动手学深度学习——Pytorch版》—自动求导

本文介绍了深度学习框架中自动微分的核心原理,包括链式法则的应用、计算图的构建、自动求导的两种方式(前向传播和反向传播)以及非标量变量的反向传播策略。此外,还探讨了Python控制流对梯度计算的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

深度学习框架通过自动计算导数,即自动微分(automatic differentiation)来加快求导。 实际中,根据设计好的模型,系统会构建一个计算图(computational graph), 来跟踪计算是哪些数据通过哪些操作组合起来产生输出。 自动微分使系统能够随后反向传播梯度。 这里,反向传播(backpropagate)意味着跟踪整个计算图,填充关于每个参数的偏导数。


链式法则

链式法则拓展到向量:

在这里插入图片描述

下面的例子展示了如何做链式求导,这里需要注意的是<x,w>表示的是求向量x与向量w的内积,实际上是(x的转置)× w,故求导后为x的转置。
在这里插入图片描述

这个例子中b是一个向量,b的第二范数表示的是b的内积,是一个标量,标量对向量求导则是一个行向量,也就是b的转置。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值