提前声明,我本人很讨厌把AI创作的东西放到互联网上污染环境。这篇文章是我和AI多次讨论之后让AI总结的。反正东西就是那些东西,谁来讲都一样,哈哈。
第一眼看KMO,我就开始思考,这玩意和KMO里面有什么联系。因为KMO里也用了偏相关系数做定义。但是仔细一看这里的定义式,却又不是那么直观。
统计学里定义无非就是那么几种,做除法,做减法,表示消除什么什么玩意的影响。
那到了这里,就不是那么简单的加减乘除了,比如1-r平方,这个是在干啥。
分母大概能理解,其实这种定义是来自一种直观的认识。假设都是1的情况下,相减就是0.
但是你又怎么能保证对相关系数做乘法不会改变本身的单调性呢?
能理解吗,这么定义,实际A和B的相关性在增加,但是可能你计算的偏相关系数增长速度是在变化的。
但是这个没办法
就像到了底下的归一化一样,确实是有效的,按照上面的分析,但是还会出现我说的那个问题。
但是重点来了,这里做了一步乘方。有没有考虑过为什么不是绝对值?
乘方,然后又包在一个绝对值下。
不需要多少数学推理,这个就是最直观的认识——次数
我希望这个指标随着偏相关性的增长是线性的。那么经过这样的操作。上下都是二次。抵消,变成一次。
一定程度会解决前面提到的非线性增长问题。
在说到KMO,其实有点重复。就是我的偏相关系数就已经描述了两个变量在剔除另一个变量的相关性。干嘛又引入一个东西?请看下文
KMO一般在问卷或者什么调查里面用。比如一个问卷有100个题我要考察他们之间的偏相关系数。能不能后续做因子分析。换句话说能不能回归出结果来。无论是多个x直接对应到y,还是x之间先算出一个z,在对应到y。
直观的理解一下,上下都是2次,是线性的。其实咱们已经分析过,那么思考一下是不是把平方换成绝对值也行?改成一次,也是线性增长。我觉得是完全可以的。
有意思吧