Open3D 点云配准-点对点的ICP算法配准(精配准)

目录

一、概述

1.1ICP算法的原理与步骤

1.2ICP算法的应用

二、代码实现

2.1关键函数

2.2完整代码

三、实现效果

3.1原始点云

3.2配准后点云

3.3变换矩阵


 Open3D点云算法汇总及实战案例汇总的目录地址:

Open3D点云算法与点云深度学习案例汇总(长期更新)-CSDN博客


一、概述

        ICP(Iterative Closest Point,迭代最近点)算法是一种用于配准两组点云数据的经典算法,广泛应用于计算机视觉和机器人学中的三维重建和姿态估计。

1.1ICP算法的原理与步骤

        ICP算法的目标是通过迭代优化,使一组点云(源点云)与另一组点云(目标点云)之间的对应点对的距离最小化。其基本步骤如下:

  1. 初始化:
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MelaCandy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值