ST表:Sparse Table,稀疏表,一种数据结构,主要用来解决静态的区间最大/最小值问题。
主要思想:倍增思想。
在看ST表之前,先看一个问题:
2 | 4 | 1 | 5 | 3 |
在这个序列中找出区间【1,3】、【3,5】、【1,5】
max【1,3】= 4
max【3,5】= 5
max【1,5】= 5
大家可以发现,在区间【1,3】中最大值是4,区间【3,5】中最大值是5,在整个区间【1,5】中最大值是5,max(a,b) = max(max(a,c), max(c,b)); (a<=c<=b)
这个性质我们称之为:可重复性贡献
如果我们单单通过这个倍增思想的话,每次询问的时间复杂度仍认为O(logn),显然这并没有得到优化。
但是基于以上性质再结合我们倍增的思想(每次前进2^i),使用两个预处理过的区间来覆盖询问区间,时间复杂度就被降至O(1)。
首先:
令f(i,j)表示从a[i] 开始连续2^j个数的最大值,区间表示为[ i,2 ^ j - 1 ];
显然,f[ i , 0 ] = a[ i ];
第二维则表示:倍增时跳的步数(2 ^ j - 1),跨越的长度。
通过以上的分析,我们得到一个状态转化方程:
max[ l , r ] = max( f [ l ] ,[r - 1 ] , f [ l + ( 1 << ( r - 1 ) ] [ r - 1 ] );
以上为预处理部分,获得各区间的最大值。
接下来我们考虑询问部分,根据转化方程,我们将询问区间[ l , r ] 分成两部分。
f[l, l+2^s-1] 和 f[r-(2^s)+1,r];
s:前进的步数
我们希望前一个子区间的右端点尽可能接近r。当l + 2 ^ s -1 = r 时,有 s = log2( r - l + 1);
但因为s是整数,所以我们向下取整 ,根据上面“可重复贡献”的性质,重叠并不会对区间最大值产生影响。同时两个区间的并完全覆盖[ l , r ] 。
由于输入输出数据一般很多,防止因为I/O被卡,这里提供一个快速读入的函数:
inline int read() {
char c = getchar();
int x = 0, f = 1;
while (c < '0' || c > '9') {
if (c == '-') f = -1;
c = getchar();
}
while (c >= '0' && c <= '9') {
x = x * 10 + c - '0';
c = getchar();
}
return x * f;
}
由于s 也就是log函数每次都需要计算,这里我们直接通过递推将log函数预处理出来
//由于log[1] = 0;若想通过下面的循环直接处理,需要将log[N] 初始化为 -1;
log[N] = {-1};
for(int i =1;i<=n;i++)
{
log[i] = log[i/2] + 1;
}
洛谷模板题: https://www.luogu.com.cn/problem/P3865
#include <bits/stdc++.h>
using namespace std;
const int MAX = 2000010;
int f[MAX][50], logn[MAX]= {-1};
inline int read() {
char c = getchar();
int x = 0, f = 1;
while (c < '0' || c > '9') {
if (c == '-') f = -1;
c = getchar();
}
while (c >= '0' && c <= '9') {
x = x * 10 + c - '0';
c = getchar();
}
return x * f;
}
int main() {
int n = read(), m = read();
for (int i = 1; i <= n; i++)
{
f[i][0] = read();
logn[i] = logn[i/2] + 1; //预处理log函数
}
//预处理最大值
for (int j = 1; j <= logn[n]; j++)
for (int i = 1; i + (1 << j) - 1 <= n; i++)
f[i][j] = max(f[i][j - 1], f[i + (1 << (j - 1))][j - 1]);
while(m--)
{
int x = read(), y = read();
int s = logn[y - x + 1];
printf("%d\n", max(f[x][s], f[y - (1 << s) + 1][s]));
}
return 0;
}
代码中f [ MAX ][ 50 ],这里的50,也就是第二维,指的就是“跳跃”的步数,大小根据数据范围而定,不小于log[MAX];
最后我们来看一下ST表的时间复杂度:
预处理:O(nlogn);
询问:O(1);
时间复杂度:O(nlogn + m);
ST表优点:时间复杂度较低 、代码量较少;
ST表缺点:维护的信息有限,只支持静态操作(不支持修改操作);