Come Back Quickly
用堆优化的dijkstra为每个点求得最短回路可过(时间复杂度O(N * N * logM))
dijkstra算法中将与起点相连的点入小根堆,同时将这些相邻点的距离了初始化,起点的距离仍为∞(注意连个点之间可能有多条边,因此距离每次都要取min),之后相当于求多源最短路,起点第一次出队时返回(第一次入队时不一定是最小值)。
另外注意点之间是单向边
#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <unordered_map>
using namespace std;
const int N = 2010, M = 2010, INF = 0x3f3f3f3f;
typedef pair<int, int> PII;
int h[N], e[M], w[M], ne[M], idx, n, m;
int dist[N], d[N][N];
bool st[N];
void add(int a, int b, int c) {
e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++;
}
int dijkstra(int start) {
priority_queue<PII, vector<PII>, greater<PII>> q;
memset(dist, 0x3f, sizeof dist);
memset(st, 0, sizeof st);
for (int i = h[start]; i != -1; i = ne[i]) {
int j = e[i];
dist[j] = min(w[i], dist[j]);
q.push({dist[j], j});
}
while (q.size()) {
auto t = q.top();
q.pop();
int dis = t.first, ver = t.second;
if (ver == start) return dist[ver];
if (st[ver]) continue;
st[ver] = 1;
for (int i = h[ver]; i != -1; i = ne[i]) {
int j = e[i];
if (!st [j] && dist[j] > dis + w[i]) {
dist[j] = dis + w[i];
q.push({dist[j], j});
}
}
}
return -1;
}
int main() {
memset(h, -1, sizeof h);
memset(d, 0x3f, sizeof d);
scanf("%d%d", &n, &m);
for (int i = 1; i <= m; i ++) {
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
add(a, b, c);
}
for (int i = 1; i <= n; i ++)
printf("%d\n", dijkstra(i));
return 0;
}