一,应用场景
1.背包问题
有一个背包,容量为4磅,现有如下物品
物品 | 重量 | 价格 |
---|---|---|
吉他(G) | 1 | 1500 |
音响(S) | 4 | 3000 |
电脑(L) | 3 | 2000 |
1)要求达到的目标为装入背包的总价值最大,并且重量不超出
2)要求装入的物品不重复
二,基本介绍
1)动态规划(Dynamic Programming)算法的核心思想是:将大问题划分为小问题进行解决,从而一步步获取最优解的处理算法。
2)动态规划算法与分治算法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。
3)与分治不同的是,适用于用动态规划求解的问题,经分解得到子问题往往不是相互独立的。(即下一个子阶段的求解是建立在上一个子阶段的基础上,进行进一步的求解)。
4)动态规划可以通过填表的方式来逐步推进,得到最优解。
三,思路分析
1)背包问题主要是指一个给定容量的背包,若干具有一定价值和重量的物品,如何选择物品放入背包使物品的价值最大。其中又分01背包和完全背包(完全背包指的是:每种物品都有无限条件可用)。
2)这里的问题属于01背包,即每个物品最多放一个。而无限背包可以转化为01背包。
3)算法的主要思想,利用动态规划来解决。每次遍历到的第i个物品,根据w[i]和val[i]来确定是否需要将该物品放入背包中。即对于给定的n个物品,设val[i],w[i]分别为第i个物品的价值和重量,C为背包的容量。再令v[i][j]表示在前i个物品中能够装入容量为j的背包中的最大价值。则我们有下面的结果:
(结合下面思路图解理解)
- v[i][0] = v[0][j] = 0; //表示填入表 第一行和第一列是0
- 当w[i] > j时:v[i][j] = v[i - 1][j]; //当准备加入新增的商品的容量大于当前背包的容量时,就直接使用上一个单元格的装入策略
- 当j >= w[i]时:v[i][j] = max{v[i - 1][j],v[i - 1][j - w[i]] + val[i]} //当准备加入的新增的商品的容量小于等于当前背包的容量,
装入方式:v[i - 1][j]:就是上一个单元格的装入的最大值
val[i]:表示当前商品的价值
v[i - 1][j - w[i]]:装入i - 1商品,到剩余空间j - w[i]的最大值
四,思路图解
物品 | 重量 | 价格 |
---|---|---|
吉他(G) | 1 | 1500 |
音响(S) | 4 | 3000 |
电脑(L) | 3 | 2000 |
解决类似的问题可以分解成一个个的小问题进行解决,假设存在背包容量大小分为1,2,3,4的各种容量的背包(分配容量的规则为最小重量的整数倍)
背包填表过程
物品 | 0磅 | 1磅 | 2磅 | 3磅 | 4磅 |
---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | |
吉他(G) | 0 | ||||
音响(S) | 0 | ||||
电脑(L) | 0 |
全0的一行表示没有商品的时候价值为0
全0的一列表示背包容量为0,什么都装不进去
1)假如现在只有吉他(G),这是不管背包容量多大,只能放一把吉他
物品 | 0磅 | 1磅 | 2磅 | 3磅 | 4磅 |
---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | |
吉他(G) | 0 | 1500(G) | 1500(G) | 1500(G) | 1500(G) |
音响(S) | 0 | ||||
电脑(L) | 0 |
2)假如有吉他(G)和音响(S)
物品 | 0磅 | 1磅 | 2磅 | 3磅 | 4磅 |
---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | |
吉他(G) | 0 | 1500(G) | 1500(G) | 1500(G) | 1500(G) |
音响(S) | 0 | 1500(G) | 1500(G) | 1500(G) | 3000(S) |
电脑(L) | 0 |
当我们背包容量是1,2,3磅的时候,仍然只能放吉他,则把吉他那一行(上一行)同一列数据拷贝下来;
当背包容量为4磅的时候,发现可以放下音响,音响价值比吉他那一行(上一行)同一列的价值大,所以先放音响
3)假如有吉他(G)和音响(S)和电脑(L)
物品 | 0磅 | 1磅 | 2磅 | 3磅 | 4磅 |
---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | |
吉他(G) | 0 | 1500(G) | 1500(G) | 1500(G) | 1500(G) |
音响(S) | 0 | 1500(G) | 1500(G) | 1500(G) | 3000(S) |
电脑(L) | 0 | 1500(G) | 1500(G) | 2000(L) | 2000(L) + 1500(G) |
当我们背包容量是1,2磅的时候,不能够放入电脑,所以把音响那一行(上一行)同一列数据拷贝下来;
当背包容量为3磅的时候,刚好能够放下电脑,且电脑价值大于音响那一行(上一行)同一列的价值,所以放入音响
当背包容量为4磅的时候,能放下电脑还剩下1磅的容量,放入能放下的最大容量即这里的吉他。
五,代码实现
package com.algorithm.dynamic;
public class KnapsackProblem {
public static void main(String[] args) {
int[] w = {1,4,3}; //物品的重量
int[] val = {1500,3000,2000};//物品的价值
int m = 4; //背包的重量
int n = val.length; //物品的个数
//为了记录放入商品的情况,我们定一个二维数组
int[][] path = new int[n + 1][m + 1];
//创建二维数组
//v[i][j] 表示在前i个物品中能够装入容量为j的背包的最大值
int[][] v = new int[n + 1][m + 1];
//初始化第一行和第一列,这里在本程序中,可以不去处理,因为默认就是0
for (int i = 0;i < v.length;i++) {
v[i][0] = 0; //将第一列设置为0
}
for (int i = 0;i < v[0].length;i++) {
v[0][i] = 0;
}
//根据前面得到的公式来动态规划处理
for (int i = 1;i < v.length;i++) { //不处理第一行 i是从1开始
for (int j = 1;j < v[0].length;j++) {
//公式
if (w[i - 1] > j) { //因为我们的程序i是从1开始的,因此原来的公式中的w[i]修改成w[i - 1]
v[i][j] = v[i - 1][j];
} else {
//因为我们的i是从1开始的,因此是w[i - 1]
//v[i][j] = Math.max(v[i - 1][j],val[i - 1] + v[i - 1][j - w[i - 1]]);
//为了记录商品存放到背包的情况,我们不能直接使用上面的公式,需要使用if-else类体现公式
if (v[i - 1][j] < val[i - 1] + v[i - 1][j - w[i - 1]]) {
v[i][j] = val[i - 1] + v[i - 1][j - w[i - 1]];
//把当前的情况记录到path
path[i][j] = 1;
} else {
v[i][j] = v[i - 1][j];
}
}
}
}
//输出一下v 看看情况
for (int i = 0;i < v.length;i++) {
for (int j = 0;j < v[i].length;j++) {
System.out.print(v[i][j] + " ");
}
System.out.println();
}
//输入最后我们是放入的哪些商品
//遍历path
System.out.println("======================");
// for (int i = 0;i < path.length;i++) {
// for (int j = 0;j < path[i].length;j++) {
// if (path[i][j] == 1) {
// System.out.printf("第%d个商品放入到背包\n",i);
// }
// }
// }
int i = path.length - 1; //行的最大下下标
int j = path[0].length - 1; //列的最大下标
while (i > 0 && j > 0) { //从path的最后开始找
if (path[i][j] == 1) {
System.out.printf("第%d个商品放入到背包\n",i);
j -= w[i - 1]; //w[i - 1]
}
i--;
}
}
}