4.1
高并发带来的问题
在微服务架构中,我们将业务拆分成一个个的服务,服务与服务之间可以相互调用,但是由于网络
原因或者自身的原因,服务并不能保证服务的
100%
可用,如果单个服务出现问题,调用这个服务就会
出现网络延迟,此时若有大量的网络涌入,会形成任务堆积,最终导致服务瘫痪。
接下来,我们来模拟一个高并发的场景
1
编写
java
代码
@RestController
@Slf4j
public class OrderController2 {
@Autowired
private OrderService orderService;
@Autowired
private ProductService productService;
@RequestMapping("/order/prod/{pid}")
public Order order(@PathVariable("pid") Integer pid) {
log.info("接收到{}号商品的下单请求,接下来调用商品微服务查询此商品信息", pid);
//调用商品微服务,查询商品信息
Product product = productService.findByPid(pid);
log.info("查询到{}号商品的信息,内容是:{}", pid, JSON.toJSONString(product));
//模拟一次网络延时
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
//下单(创建订单)
Order order = new Order();
order.setUid(1);
order.setUsername("测试用户");
order.setPid(pid);
order.setPname(product.getPname());
order.setPprice(product.getPprice());
order.setNumber(1);
//为了不产生太多垃圾数据,暂时不做订单保存
//orderService.createOrder(order);
log.info("创建订单成功,订单信息为{}", JSON.toJSONString(order));
return order;
}
@RequestMapping("/order/message")
public String message() {
return "高并发下的问题测试";
}
}
2
修改配置文件中
tomcat
的并发数
server:
port: 8091
tomcat:
max-threads: 10 #tomcat的最大并发值修改为10,默认是200
3
接下来使用压测工具
,
对请求进行压力测试
下载地址
https://jmeter.apache.org/
第一步:修改配置,并启动软件
进入
bin
目录
,
修改
jmeter.properties
文件中的语言支持为
language=zh_CN
,然后点击
jmeter.bat
启动软件。

第二步:添加线程组

第三步:配置线程并发数

第四步:添加
Http
取样

第五步:配置取样,并启动测试

4
访问m
essage
方法观察效果
此时会发现
,
由于
order
方法囤积了大量请求
,
导致m
essage
方法的访问出现了问题,这就是
服务雪
崩
的雏形。
4.2
服务雪崩效应
在分布式系统中
,
由于网络原因或自身的原因
,
服务一般无法保证
100%
可用。如果一个服务出现了
问题,调用这个服务就会出现线程阻塞的情况,此时若有大量的请求涌入,就会出现多条线程阻塞等
待,进而导致服务瘫痪。
由于服务与服务之间的依赖性,故障会传播,会对整个微服务系统造成灾难性的严重后果,这就是
服务故障的
“
雪崩效应
”
。

雪崩发生的原因多种多样,有不合理的容量设计,或者是高并发下某一个方法响应变慢,亦或是某
台机器的资源耗尽。我们无法完全杜绝雪崩源头的发生,只有做好足够的容错,保证在一个服务发生问
题,不会影响到其它服务的正常运行。也就是"雪落而不雪崩"。
4.3
常见容错方案
要防止雪崩的扩散,我们就要做好服务的容错,容错说白了就是保护自己不被猪队友拖垮的一些措
施
,
下面介绍常见的服务容错思路和组件。
常见的容错思路
常见的容错思路有隔离、超时、限流、熔断、降级这几种,下面分别介绍一下。
隔离
它是指将系统按照一定的原则划分为若干个服务模块,各个模块之间相对独立,无强依赖。当有故
障发生时,能将问题和影响隔离在某个模块内部,而不扩散风险,不波及其它模块,不影响整体的
系统服务。常见的隔离方式有:线程池隔离和信号量隔离.

超时
在上游服务调用下游服务的时候,设置一个最大响应时间,如果超过这个时间,下游未作出反应,
就断开请求,释放掉线程。

限流
限流就是限制系统的输入和输出流量已达到保护系统的目的。为了保证系统的稳固运行
,
一旦达到
的需要限制的阈值
,
就需要限制流量并采取少量措施以完成限制流量的目的。

熔断
在互联网系统中,当下游服务因访问压力过大而响应变慢或失败,上游服务为了保护系统整
体的可用性,可以暂时切断对下游服务的调用。这种牺牲局部,保全整体的措施就叫做熔断。

服务熔断一般有三种状态:
熔断关闭状态(
Closed
)
服务没有故障时,熔断器所处的状态,对调用方的调用不做任何限制
熔断开启状态(
Open
)
后续对该服务接口的调用不再经过网络,直接执行本地的
fallback
方法
半熔断状态(
Half-Open
)
尝试恢复服务调用,允许有限的流量调用该服务,并监控调用成功率。如果成功率达到预
期,则说明服务已恢复,进入熔断关闭状态;如果成功率仍旧很低,则重新进入熔断关闭状
态。
降级
降级其实就是为服务提供一个托底方案,一旦服务无法正常调用,就使用托底方案。

常见的容错组件
Hystrix
Hystrix
是由
Netflix
开源的一个延迟和容错库,用于隔离访问远程系统、服务或者第三方库,防止
级联失败,从而提升系统的可用性与容错性。
Resilience4J
Resilicence4J
一款非常轻量、简单,并且文档非常清晰、丰富的熔断工具,这也是
Hystrix
官方推
荐的替代产品。不仅如此,
Resilicence4j
还原生支持
Spring Boot 1.x/2.x
,而且监控也支持和
prometheus
等多款主流产品进行整合。
Sentinel
Sentinel
是阿里巴巴开源的一款断路器实现,本身在阿里内部已经被大规模采用,非常稳定。
下面是三个组件在各方面的对比:

4.4 Sentinel
入门
4.4.1
什么是
Sentinel
Sentinel (
分布式系统的流量防卫兵
)
是阿里开源的一套用于
服务容错
的综合性解决方案。它以流量
为切入点
,
从
流量控制、熔断降级、系统负载保护
等多个维度来保护服务的稳定性。
Sentinel
具有以下特征
:
丰富的应用场景
:
Sentinel
承接了阿里巴巴近
10
年的双十一大促流量的核心场景
,
例如秒杀(即
突发流量控制在系统容量可以承受的范围)、消息削峰填谷、集群流量控制、实时熔断下游不可用
应用等。
完备的实时监控
:
Sentinel
提供了实时的监控功能。通过控制台可以看到接入应用的单台机器秒
级数据
,
甚至
500
台以下规模的集群的汇总运行情况。
广泛的开源生态
:
Sentinel
提供开箱即用的与其它开源框架
/
库的整合模块
,
例如与
Spring
Cloud
、
Dubbo
、
gRPC
的整合。只需要引入相应的依赖并进行简单的配置即可快速地接入
Sentinel
。
完善的
SPI
扩展点
:
Sentinel
提供简单易用、完善的
SPI
扩展接口。您可以通过实现扩展接口来快
速地定制逻辑。例如定制规则管理、适配动态数据源等。
Sentinel
分为两个部分
:
核心库(
Java
客户端)不依赖任何框架
/
库
,
能够运行于所有
Java
运行时环境,同时对
Dubbo /
Spring Cloud
等框架也有较好的支持。
控制台(
Dashboard
)基于
Spring Boot
开发,打包后可以直接运行,不需要额外的
Tomcat
等
应用容器
4.4.2
微服务集成
Sentinel
为微服务集成
Sentinel
非常简单
,
只需要加入
Sentinel
的依赖即可
1
在
pom.xml
中加入下面依赖
<dependency>
<groupId>com.alibaba.cloud</groupId>
<artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
</dependency>
2
编写一个
Controller
测试使用
@RestController
@Slf4j
public class OrderController3 {
@RequestMapping("/order/message1")
public String message1() {
return "message1";
}
@RequestMapping("/order/message2")
public String message2() {
return "message2";
}
}
4.4.3
安装
Sentinel
控制台
Sentinel
提供一个轻量级的控制台
,
它提供机器发现、单机资源实时监控以及规则管理等功能。
1
下载
jar
包
,
解压到文件夹
https://github.com/alibaba/Sentinel/releases
2
启动控制台
# 直接使用jar命令启动项目(控制台本身是一个SpringBoot项目)
java -Dserver.port=8080 -Dcsp.sentinel.dashboard.server=localhost:8080 -
Dproject.name=sentinel-dashboard -jar sentinel-dashboard-1.7.0.jar
3
修改
shop
-
order
,
在里面加入有关控制台的配置
spring:
cloud:
sentinel:
transport:
port: 9999 #跟控制台交流的端口,随意指定一个未使用的端口即可
dashboard: localhost:8080 # 指定控制台服务的地址
第
4
步
:
通过浏览器访问
localhost:8080
进入控制台
(
默认用户名密码是
sentinel/sentinel )

补充:了解控制台的使用原理
Sentinel
的控制台其实就是一个
SpringBoot
编写的程序。我们需要将我们的微服务程序注册到控制台上
,
即在微服务中指定控制台的地址
,
并且还要开启一个跟控制台传递数据的端口
,
控制台也可以通过此端口
调用微服务中的监控程序获取微服务的各种信息。

4.4.4
实现一个接口的限流
1
通过控制台为
message1
添加一个流控规则

4.5 Sentinel
的概念和功能
4.5.1
基本概念
资源
资源就是
Sentinel
要保护的东西
资源是
Sentinel
的关键概念。它可以是
Java
应用程序中的任何内容,可以是一个服务,也可以是
一个方法,甚至可以是一段代码。
我们入门案例中的
message1
方法就可以认为是一个资源
规则
规则就是用来定义如何进行保护资源的
作用在资源之上
,
定义以什么样的方式保护资源,主要包括流量控制规则、熔断降级规则以及系统
保护规则。
我们入门案例中就是为
message1
资源设置了一种流控规则
,
限制了进入
message1
的流量
4.5.2
重要功能

Sentinel
的主要功能就是容错,主要体现为下面这三个:
流量控制
流量控制在网络传输中是一个常用的概念,它用于调整网络包的数据。任意时间到来的请求往往是
随机不可控的,而系统的处理能力是有限的。我们需要根据系统的处理能力对流量进行控制。
Sentinel
作为一个调配器,可以根据需要把随机的请求调整成合适的形状。
熔断降级
当检测到调用链路中某个资源出现不稳定的表现,例如请求响应时间长或异常比例升高的时候,则
对这个资源的调用进行限制,让请求快速失败,避免影响到其它的资源而导致级联故障。
Sentinel
对这个问题采取了两种手段
:
通过并发线程数进行限制
Sentinel
通过限制资源并发线程的数量,来减少不稳定资源对其它资源的影响。当某个资源
出现不稳定的情况下,例如响应时间变长,对资源的直接影响就是会造成线程数的逐步堆
积。当线程数在特定资源上堆积到一定的数量之后,对该资源的新请求就会被拒绝。堆积的
线程完成任务后才开始继续接收请求。
通过响应时间对资源进行降级
除了对并发线程数进行控制以外,
Sentinel
还可以通过响应时间来快速降级不稳定的资源。
当依赖的资源出现响应时间过长后,所有对该资源的访问都会被直接拒绝,直到过了指定的
时间窗口之后才重新恢复。
Sentinel
和
Hystrix
的区别
两者的原则是一致的
,
都是当一个资源出现问题时
,
让其快速失败
,
不要波及到其它服务
但是在限制的手段上
,
确采取了完全不一样的方法
:
Hystrix
采用的是线程池隔离的方式
,
优点是做到了资源之间的隔离
,
缺点是增加了线程
切换的成本。
Sentinel
采用的是通过并发线程的数量和响应时间来对资源做限制。
系统负载保护
Sentinel
同时提供系统维度的自适应保护能力。当系统负载较高的时候,如果还持续让
请求进入可能会导致系统崩溃,无法响应。在集群环境下,会把本应这台机器承载的流量转发到其
它的机器上去。如果这个时候其它的机器也处在一个边缘状态的时候,
Sentinel
提供了对应的保
护机制,让系统的入口流量和系统的负载达到一个平衡,保证系统在能力范围之内处理最多的请
求。
总之一句话
:
我们需要做的事情,就是在
Sentinel
的资源上配置各种各样的规则,来实现各种容错的功
能。
4.6 Sentinel
规则
4.6.1
流控规则
流量控制,其原理是监控应用流量的
QPS(
每秒查询率
)
或并发线程数等指标,当达到指定的阈值时
对流量进行控制,以避免被瞬时的流量高峰冲垮,从而保障应用的高可用性。
第
1
步
:
点击簇点链路,我们就可以看到访问过的接口地址,然后点击对应的流控按钮,进入流控规则配
置页面。新增流控规则界面如下

资源名
:唯一名称,默认是请求路径,可自定义
针对来源
:指定对哪个微服务进行限流,默认指
default
,意思是不区分来源,全部限制
阈值类型
/
单机阈值
:
QPS
(每秒请求数量)
:
当调用该接口的
QPS
达到阈值的时候,进行限流
线程数:当调用该接口的线程数达到阈值的时候,进行限流
是否集群
:暂不需要集群
接下来我们以
QPS
为例来研究限流规则的配置。
4.6.1.1
简单配置
我们先做一个简单配置,设置阈值类型为
QPS
,单机阈值为
3
。即每秒请求量大于
3
的时候开始限流。
接下来,在流控规则页面就可以看到这个配置。

然后快速访问
/order/message1
接口,观察效果。此时发现,当
QPS > 3
的时候,服务就不能正常响
应,而是返回
Blocked b
y Sentinel (flo
w limiting)
结果。

4.6.1.2
配置流控模式
点击上面设置流控规则的
编辑
按钮,然后在编辑页面点击
高级选项
,会看到有流控模式一栏

sentinel
共有三种流控模式,分别是:
直接(默认):接口达到限流条件时,开启限流
关联:当关联的资源达到限流条件时,开启限流
[
适合做应用让步
]
链路:当从某个接口过来的资源达到限流条件时,开启限流
下面呢分别演示三种模式:
直接流控模式
直接流控模式是最简单的模式,当指定的接口达到限流条件时开启限流。上面案例使用的就是直接流控
模式。
关联流控模式
关联流控模式指的是,当指定接口关联的接口达到限流条件时,开启对指定接口开启限流。
第
1
步:配置限流规则
,
将流控模式设置为关联,关联资源设置为的
/order/message2
。

第
3
步:通过
postman