yolov5源码解析

前言

第一次写博客,为了方便每次隔一段时间重看yolov5源码都会忘记很多细节,都要重新找然后看很多文章,直接自己写博客记录下来。
参考文章:
YOLOv5源码逐行超详细注释与解读(1)——项目目录结构解析
YOLOv5源码逐行超详细注释与解读(5)——配置文件yolov5s.yaml
YOLOv5源码逐行超详细注释与解读(6)——网络结构(1)yolo.py
YOLOv5源码逐行超详细注释与解读(7)——网络结构(2)common.py
万字长文!YOLO算法模型yaml文件史上最详细解析与教程!小白也能看懂!掌握了这个就掌握了魔改YOLO的核心!

1、两个重要图片

YOLOv5有四个版本n,s,m,l,输入图片尺寸都为640×640,经过32倍下采样,输出3个预测特征层。
各个版本模型网络结构相同,只是网络深度和宽度不同。
在这里插入图片描述
在这里插入图片描述

2、Neck部分——FPN+PANet

3、common.py文件

Bottleneck子模块

	在CNN中,卷积层和池化层等操作会影响特征图的空间尺寸。例如:
卷积层:
如果使用1x1卷积核,通常不会改变特征图的空间尺寸,但会改变通道数。
如果使用3x3卷积核,且步长为1,填充为1,则输出特征图的空间尺寸保持不变。
如果使用3x3卷积核,且步长为2,则输出特征图的空间尺寸会减半。
池化层:
如果使用最大池化或平均池化,通常会减少特征图的空间尺寸
	因此,以下模块中的cv1,cv2两个卷积操作仅仅改变特征图通道数,不会改变尺寸。
class Bottleneck(nn.Module):
    # Standard bottleneck
    def __init__(self, c1, c2, shortcut=True, g=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值