生成模型之扩散模型DDPM学习笔记

扩散模型DDPM


论文地址: Denoising Diffusion Probabilistic Models (DDPM)

如何运作

​ 从guassian distribution进行采样得到一个噪声的图片,图片大小与想输出的图像一致,接着通过一系列的Denoise得到最终输出的图片。

2023-11-26_13-39-35

​ 为了让模型运行更好,针对不同噪声图片,我们都会进行一个编码代表当前noise的程度),对step步数也进行输入。因为如果不进行次数编码,对于不同噪声图片(图片差异很大),通过同一个模型,其处理效果可能就不是那么友好。

2023-11-26_13-41-28

Denoise通过Noise Predicter去预测输入的图片中,噪声是什么样的,然后进行相减就能得到输出图片。

预测噪声长什么样,而不是直接生成图片

2023-11-26_13-43-21

​ 训练数据来自于前向加噪声的过程,自己添加噪声和已知的step加到原始图片,就能生成一个带噪声的图片,反过来看,就是生成了训练数据了。

2023-11-26_13-45-23

基本概念

2023-11-28_17-24-01

2023-11-26_14-02-54

2023-11-26_14-03-44

训练过程

2023-11-28_17-33-38

通过 α t ˉ \bar{\alpha_t} αtˉ吧决定噪声权重,一次性加上,而不是一次次递推加.

推理过程:

最后新增加了噪声,才输出生成的图片。

2023-11-28_17-39-23

目标

极大似然估计,根据目标的estimation,生成的estimation与标准的estimation衡量

2023-11-28_18-44-51

想让产生的 P θ ( x i ) P_\theta(x^i) Pθ(xi)越大越好
θ ∗ = arg ⁡ max ⁡ θ ∏ i = 1 m P θ ( x i ) \theta^*=\arg \max_\theta \prod_{i=1}^mP_\theta(x^i) θ=argθmaxi=1mPθ(xi)

$$
\begin{aligned}
&\mathsf{Sample}\left{x{1},x{2},\ldots,x^{m}\right}\mathsf{from}P_{data}(x) \
\theta{*}&=arg\max_{\theta}\prod_{i=1}{m}P_{\theta}(x{i})=arg\max_{\theta}log\prod_{i=1}{m}P_{\theta}(x^{i}) \
&=arg\max_{\theta}\sum_{i=1}{m}logP_{\theta}\bigl(x{i}\bigr)\approx arg\max_{\theta}E_{x\sim P_{data}}\bigl[logP_{\theta}(x)\bigr] \

\end{aligned}
KaTeX parse error: Can't use function '$' in math mode at position 4: 由于$̲\int\limits_{x}…
&=arg\max_{\theta}\int\limits_{x}P_{data}(x)logP_{\theta}(x)dx\quad{\color{Red}-\int\limits_{x}P_{data}(x)logP_{data}(x)dx}\
&=arg\max\limits_{\theta}\int\limits_{x}P_{data}(x)log\frac{P_{\theta}(x)}{P_{data}(x)}dx=arg\min\limits_{\theta}KL(P_{data}||P_{\theta}) \
&\text{Maximum Likelihood=Minimize KL Divergence}
$$

第一个 P ( x T ) P(x_T) P(xT)是直接在原图进行采样的,不需要使用到 θ \theta θ

损失函数推导

2023-11-28_19-01-40

2023-11-28_19-04-43

2023-11-28_19-09-282023-11-28_19-12-07

kl散度没关系, P ( x T ) q ( x T ∣ x 0 ) P(x_T)q(x_T|x_0) P(xT)q(xTx0)两项一项是自己找噪声图片概率,一个是前向process自己定义的,可以拿走

2023-11-28_19-21-16

2023-11-28_19-25-25

让x(t)丢进去,希望输出的尽可能接近左边的mean

2023-11-28_19-31-50

为什么加noise?经过实验,如果不加noise什么都生成不了,加入了能生成。

2023-11-28_19-39-59

评估标准

2023-11-28_17-26-37

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Miracle Fan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值