数据结构单调栈详解

本文介绍了一种利用单调栈求解子区间最大值与最小值之差总和的方法。通过两次遍历数组,分别计算每个元素作为最大值和最小值时能延伸的左右边界,进而得出最终答案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文正在补充书写中

单调栈基础

例题1-求最大矩形面积

直方图中最大的矩形 - 题目链接

#include <bits/stdc++.h>
using namespace std;
int main() {
    int n;
    while (cin >> n) {
        if (n == 0) break;
        vector<int> h(n + 1), w(n + 1), stk;
        h[n] = 0; // 多加一个高度为0的矩形,防止扫描完成后有剩余矩形
        long long ans = 0;
        for (int i = 0; i <= n; ++i) {
            if (i != n) {
                cin >> h[i];
            }
            int width = 0;
            while (stk.size() && h[i] <= h[stk.back()]) {
                width += w[stk.back()];
                ans = max(ans, 1ll * width * h[stk.back()]);
                stk.pop_back();
            }
            w[i] = width + 1;
            stk.push_back(i);
        }
        cout << ans << "\n";
    }
    
    return 0;
}

例题2-区区区间间间

在这里插入图片描述
在这里插入图片描述
原题的题意可以理解为求所有子区间的最大值减去最小值的和。
即所有子区间的最大值减去最小值。
我们考虑用单调栈求解。
维护两个数组 l[i] ,r[i]。表示当前元素作为最大值所能到达的左边和右边的下标是多少(当前元素作为最值),用单调栈维护。
先正着维护左区间,再倒着维护右区间。
维护时的操作:当前元素大于前一个元素时,下标存上一个l[i]的下标,一直循环下去,直到当前数小于前面比较的数,左区间维护成功。右区间的维护是同样的道理。

维护最小值只需要把原来数组全部变成相反数,可以找到最小值。

求和:排列组合的思想,当前数作为最大值,左边到l[i] ,右边到r[i],左边的情况有i-l[i]种,右边情况有r[i]-i种,相乘即可。

#include<bits/stdc++.h>
using namespace std;
#define int long long 
int a[1<<17];
int l[1<<17],r[1<<17];
int n;
int  solve(){

     for(int i=1;i<=n;i++){
            int j=i;
            while(j>1 && a[j-1]<=a[i]) //当前数与前面的数进行比较
                    j=l[j-1];
            l[i]=j;
        }
        for(int i=n;i;i--){
            int j=i;
            while(j<n && a[j+1]<a[i])
                 j=r[j+1];
            r[i]=j;
        }
        int ans=0;
        for(int i=1;i<=n;i++){
            //cout<<l[i]<<" "<<r[i]<<endl;
             ans += a[i]*(r[i]-l[i]);
             ans += a[i]*(i-l[i])*(r[i]-i);
        }
    return ans;
}
signed main(){

    int t;cin>>t;
    while(t--){
        cin>>n;
        for(int i=1;i<=n;i++) cin>>a[i];
        int ans=solve();
        for(int i=1;i<=n;i++) a[i]=-a[i];
        cout<<ans+solve()<<endl;
    }
    return 0;
}

2022-11-11重做
求最大值所覆盖的区间使用单调递减栈。
求最小值所覆盖的区间使用单调递增栈。
每个值都有一个l[i],r[i]数组,代表当前值作为最大(最小值)向左和向右最远可扩展的下标。

#include<bits/stdc++.h>

using namespace std;
using ll = long long;
using vi = vector<int>;
using pii = pair<int, int>;

void solve()
{
	int n;
	cin >> n;
	vi a(n + 1);
	for(int i = 1; i <= n; i++)
		cin >> a[i];

	ll ans = 0;

	// mx
	vi stk;
	vi l(n + 1), r(n + 1, n);
	for(int i = 1; i <= n; i++)
	{
		while(!stk.empty() && a[i] >= a[stk.back()])
		{
			r[stk.back()] = i - 1;
			stk.pop_back();
		}
		l[i] = stk.empty() ? 1 : stk.back() + 1;
		stk.push_back(i);
	}

	for(int i = 1; i <= n; i++)
		ans += 1ll * a[i] * (i - l[i] + 1) * (r[i] - i + 1);
	
	//mn
	stk.clear();
	vi L(n + 1), R(n + 1, n);

	for(int i = 1; i <= n; i++)
	{
		while(!stk.empty() && a[i] <= a[stk.back()])
		{
			R[stk.back()] = i - 1;
			stk.pop_back();
		}
		L[i] = stk.empty() ? 1 : stk.back() + 1;
		stk.push_back(i);
	}

	for(int i = 1; i <= n; i++)
		ans -= 1ll * a[i] * (i - L[i] + 1) * (R[i] - i + 1);

	cout << ans << "\n";
}
int main()
{
	ios::sync_with_stdio(false);
	cin.tie(0);

	int t;
	t = 1;
	cin >> t;
	while(t--)
		solve();
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

行码棋

码字好辛苦,总结好吃力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值