博客说明&留言板

本文介绍了使用 HLPP(Hopcroft-Karp 最短增广路径)算法解决最大流问题的详细过程,包括代码实现和关键步骤。通过示例展示了如何找到网络中从源点到汇点的最大流量,并提供了完整的 C++ 代码实现。

更好的阅读体验&最新更新 见https://q779.github.io/

博客文章不会再更新(显然)

以后有可能不再维护CSDN,取决于我的github.io开发情况

upd 20220726 吗的终于开发完了

欢迎留言。

这里好像太短的文章都不让发,那我就贴几个代码充充数

// HLPP
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define INF 0x3f3f3f3f3f3f3f3f
// #define INF 0x3f3f3f3f
#define gc() readchar()
#define pc(a) putchar(a)
#define N (int)(2e3+15)
#define M (int)(3e5+15)
#define SIZ (int)(1e5+5)
char buf1[SIZ];
char *p1=buf1,*p2=buf1;
char readchar()
{
    if(p1==p2)p1=buf1,p2=buf1+fread(buf1,1,SIZ,stdin);
    return p1==p2?EOF:*p1++;
}
template<typename T>void read(T &k)
{
    char ch=gc();T x=0,f=1;
    while(!isdigit(ch)){if(ch=='-')f=-1;ch=gc();}
    while(isdigit(ch)){x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
    k=x*f;
}
template<typename T>void write(T k)
{
    static T stk[66];T top=0;
    do{stk[top++]=k%10,k/=10;}while(k);
    while(top){pc(stk[--top]+'0');}
}
struct Edge{int v,w,next;};
vector<Edge> vec[N];
int n,m,s,t,now;
int gap[N],h[N],val[N],vis[N];
struct cmp
{
    bool operator()(int a,int b)
        {return h[a]<h[b];}
};
priority_queue<int,vector<int>,cmp> q;
queue<int> b;
bool bfs()
{
    memset(h,0x3f,(n+1)*sizeof(int));
    b.push(t);h[t]=0;vis[t]=1;
    while(!b.empty())
    {
        int u=b.front();b.pop();
        vis[u]=0;
        for(int i=0; i<vec[u].size(); i++)
        {
            int v=vec[u][i].v,j=vec[u][i].next;
            if(vec[v][j].w>0&&h[v]>h[u]+1)
            {
                h[v]=h[u]+1;
                if(!vis[v])
                    b.push(v),vis[v]=1;
            }
        }
    }
    return h[s]!=INF;
}
void relabel(int u)
{
    h[u]=INF;
    for(int i=0; i<vec[u].size(); i++)
    {
        int v=vec[u][i].v;
        if(vec[u][i].w>0&&h[u]>h[v]+1)
            h[u]=h[v]+1;
    }
}
int HLPP()
{
    if(!bfs())return -1;
    h[s]=n;
    for(int i=1; i<=n; i++)
        if(h[i]!=INF)++gap[h[i]];
    for(int i=0; i<vec[s].size(); i++)
    {
        int v=vec[s][i].v,w=vec[s][i].w,j=vec[s][i].next;
        if(w>0)
        {
            val[s]-=w;
            val[v]+=w;
            vec[s][i].w-=w;
            vec[v][j].w+=w;
            if(!vis[v]&&v!=t&&v!=s)
                q.push(v),vis[v]=1;
        }
    }
    while(!q.empty())
    {
        int u=q.top();
        q.pop();vis[u]=0;
        if(h[u]==INF)continue; // !!!!!!!!!!!
        for(int i=0; i<vec[u].size(); i++)
        {
            int v=vec[u][i].v,j=vec[u][i].next;
            if(vec[u][i].w>0&&h[u]==h[v]+1)
            {
                int w=min(vec[u][i].w,val[u]);
                val[u]-=w;
                val[v]+=w;
                vec[u][i].w-=w;
                vec[v][j].w+=w;
                if(!vis[v]&&v!=t&&v!=s)
                    q.push(v),vis[v]=1;
                if(!val[u])break;
            }
        }
        if(!val[u])continue;
        if(!--gap[h[u]])
        {
            for(int i=1; i<=n; i++)
                if(i!=s&&i!=t&&h[u]<h[i]&&h[i]<=n)
                    h[i]=n+1;
        }
        relabel(u);++gap[h[u]];
        q.push(u);vis[u]=1;
    }
    return val[t];
}
signed main()
{
    read(n);read(m);read(s);read(t);
    for(int i=1,u,v,w; i<=m; i++)
    {
        read(u);read(v);read(w);
        vec[u].push_back({v,w,(int)vec[v].size()});
        vec[v].push_back({u,0,(int)vec[u].size()-1});
    }
    write(HLPP());pc('\n');
    return 0;
}

一、数据采集层:多源人脸数据获取 该层负责从不同设备 / 渠道采集人脸原始数据,为后续模型训练与识别提供基础样本,核心功能包括: 1. 多设备适配采集 实时摄像头采集: 调用计算机内置摄像头(或外接 USB 摄像头),通过OpenCV的VideoCapture接口实时捕获视频流,支持手动触发 &ldquo;拍照&rdquo;(按指定快捷键如Space)或自动定时采集(如每 2 秒采集 1 张),采集时自动框选人脸区域(通过Haar级联分类器初步定位),确保样本聚焦人脸。 支持采集参数配置:可设置采集分辨率(如 640&times;480、1280&times;720)、图像格式(JPG/PNG)、单用户采集数量(如默认采集 20 张,确保样本多样性),采集过程中实时显示 &ldquo;已采集数量 / 目标数量&rdquo;,避免样本不足。 本地图像 / 视频导入: 支持批量导入本地人脸图像文件(支持 JPG、PNG、BMP 格式),自动过滤非图像文件;导入视频文件(MP4、AVI 格式)时,可按 &ldquo;固定帧间隔&rdquo;(如每 10 帧提取 1 张图像)或 &ldquo;手动选择帧&rdquo; 提取人脸样本,适用于无实时摄像头场景。 数据集对接: 支持接入公开人脸数据集(如 LFW、ORL),通过预设脚本自动读取数据集目录结构(按 &ldquo;用户 ID - 样本图像&rdquo; 分类),快速构建训练样本库,无需手动采集,降低系统开发与测试成本。 2. 采集过程辅助功能 人脸有效性校验:采集时通过OpenCV的Haar级联分类器(或MTCNN轻量级模型)实时检测图像中是否包含人脸,若未检测到人脸(如遮挡、侧脸角度过大),则弹窗提示 &ldquo;未识别到人脸,请调整姿态&rdquo;,避免无效样本存入。 样本标签管理:采集时需为每个样本绑定 &ldquo;用户标签&rdquo;(如姓名、ID 号),支持手动输入标签或从 Excel 名单批量导入标签(按 &ldquo;标签 - 采集数量&rdquo; 对应),采集完成后自动按 &ldquo;标签 - 序号&rdquo; 命名文件(如 &ldquo;张三
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值