深度学习计算图学习路线

深度学习计算图学习路线


1. 必须掌握(基础核心)

  • 计算图的基本概念
    • 什么是计算图(节点表示操作/变量,边表示数据流)
    • 前向传播(Forward Propagation)和反向传播(Backward Propagation)的流程
  • 链式法则(Chain Rule)
    • 如何通过计算图理解反向传播的梯度计算(如标量、向量、矩阵的求导)
  • 常见算子的梯度计算
    • 加减乘除、矩阵乘法(MatMul)、激活函数(ReLU/Sigmoid/Tanh)、Softmax的梯度推导
  • 计算图的实现方式
    • 静态图(Static Graph,如TensorFlow 1.x) vs 动态图(Dynamic Graph,如PyTorch)的区别
  • 自动微分(Autograd)原理
    • 如何通过计算图实现自动求导(如PyTorch的backward()底层逻辑)

2. 掌握后加分(进阶能力)

  • 计算图的优化技术
    • 常见图优化:常量折叠(Constant Folding)、算子融合(Operator Fusion)、内存优化
    • 框架如何通过计算图优化性能(如TensorFlow的Grappler、PyTorch的TorchScript)
  • 动态图的控制流实现
    • 如何处理条件分支(If-Else)和循环(While-Loop)的反向传播(如PyTorch的torch.condtorch.while_loop
  • 高阶导数(Higher-Order Derivatives)
    • 如何计算二阶导数(Hessian矩阵)或在元学习(Meta-Learning)中的应用
  • 分布式计算图
    • 数据并行(Data Parallelism)和模型并行(Model Parallelism)在计算图中的实现(如Megatron-LM的流水线并行)

3. 深入且有难度(研究方向/框架开发)

  • 符号微分(Symbolic Differentiation) vs 自动微分
    • 符号微分的局限性(如表达式膨胀问题)与自动微分的优势
  • 计算图的编译技术
    • 如何将计算图编译为高效代码(如TVM、XLA、PyTorch的TorchDynamo)
  • 内存管理与计算图
    • 梯度检查点(Gradient Checkpointing)技术,权衡计算与内存
  • 可微分编程(Differentiable Programming)
    • 非传统算子的自定义梯度(如PyTorch的torch.autograd.Function
    • 物理仿真、概率编程语言(如Pyro)中的计算图应用
  • 计算图的调试与可视化
    • 如何可视化复杂计算图(如TensorBoard、Netron)
    • 梯度异常(如梯度消失/爆炸)的调试方法

学习建议

  1. 基础部分:先通过手推梯度(如用计算图推导LSTM的梯度)和框架实践(PyTorch/TensorFlow的自动微分)巩固。
  2. 进阶部分:阅读框架源码(如PyTorch的autograd引擎)或论文(如《AutoDiff》综述)。
  3. 深入部分:结合分布式训练(如Horovod)、编译器优化(TVM)等实际场景学习。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值