第1题 范围查询(Range)

这篇博客介绍了如何运用二分查找算法解决一个数据结构问题:在数轴上给定n个点,对m次区间查询,计算每个闭区间内点的数量。题目要求时间复杂度为O(n+mlogn),空间复杂度为O(n)。代码实现中,首先对点进行排序,然后对每个查询区间,通过upper_bound和lower_bound函数找到边界并计算区间内的点数。提供的测试用例验证了算法的正确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数轴上有n个点,对于任一闭区间 [a, b],试计算落在其内的点数。
要求:
0 ≤ n, m ≤ 5×10^5
对于每次查询的区间[a, b],都有a ≤ b
各点的坐标互异

输入格式:
第一行包括两个整数:点的总数n,查询的次数m。
第二行包含n个数,为各个点的坐标。
以下m行,各包含两个整数:查询区间的左、右边界a和b。

输出格式:
对每次查询,输出落在闭区间[a, b]内点的个数。

输入样例:
5 2
1 3 7 9 11
4 6
7 12

输出样例:
0
3

code:

//本题的逻辑结构:线性表
//本题的存储结构:顺序
//解题思路和算法:二分查找,答案为大于右边界的个数-大于等于左边界的个数
//效率:时间复杂度O(n+mlogn)、空间复杂度O(n):
//测试数据: 
/*
(1)
输入:
5 2
1 3 7 9 11
4 6
7 12
输出:
0
3
*/
#include <bits/stdc++.h>
#define rep(i,a,b) for(auto i=(a);i<=(b);++i)
#define dep(i,a,b) for(auto i=(a);i>=(b);--i)

using namespace std;
typedef long long ll;
const ll N = 5e5+10;

int s[N];

void AC(){
    int n,m;
    scanf("%d %d",&n,&m);
    rep(i,1,n){
        scanf("%d",&s[i]);
    }
    sort(s+1,s+1+n);
    while(m--){
        int a,b;/* 区间左右边界 */
        scanf("%d %d",&a,&b);
        
        /* 大于右边界的个数-大于等于左边界的个数 */
        int ans = upper_bound(s+1,s+1+n,b)-lower_bound(s+1,s+1+n,a);
        printf("%d\n",ans);
    }
}
/*

*/
int main(){
    int _ = 1;/* 样例组数 */
    //scanf("%d",&_);
    while(_--){
        AC();
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值