罗斯福国家森林树木类型识别

该文通过Python的pandas库读取并分析CSV数据,首先可视化数据中Cover_Type标签的分布,然后进行特征选择,排除Hillshade_3pm特征。最后使用随机森林分类器(RandomForestClassifier)训练模型以识别不同类型的树木。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第1关:初窥数据

import pandas as pd
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt

#********* Begin *********#
# 读取./train_data.csv并可视化标签的分布并保存可视化结果到./stpe1/dump/result.jpg
df = pd.read_csv('./train_data.csv')# 读取数据
df['Cover_Type'].hist(bins=10)# 绘制树木类型的直方图
plt.savefig('./step1/dump/result.jpg')# 保存数据
plt.show()# 可视化
#********* End *********#

第2关:特征选择

import pandas as pd

df = pd.read_csv('./train_data.csv')

r = df.drop(['Hillshade_3pm'], axis = 1)

print(r)

第3关:树木类型识别

def predict_cover_type(train_feature, label, test_feature):

    from sklearn.ensemble import RandomForestClassifier

    rfc = RandomForestClassifier(n_estimators=10)

    rfc.fit(train_feature,label)

    return rfc.predict(test_feature) 

def predict_cover_type(train_feature, label, test_feature):

    from sklearn.ensemble import RandomForestClassifier

    rfc = RandomForestClassifier(n_estimators=10)#

    rfc.fit(train_feature,label)

    return rfc.predict(test_feature) 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值