循环神经网路RNN

首先介绍一下循环神经网络的主要处理对象

序列模型

定义:通常在自然语言、音频、视频以及其它序列数据的模型。
催生了自然语言理解、语音识别、音乐合成、聊机器人、机器翻译等领域的诸多应用。

为什么要用序列模型,以及为什么序列模型在CNN等神经网路中的效果不好

  • 序列类型数据前后之间有很强的关联性
  • 序列类型数据的输入输出长度不固定
    • 如:如果上天能够给我一个再来一次的机会,我会对那个女孩说三个字,____

可以见得,我们会根据前文的内容熟练的填入“我爱你”三个字,而CNN神经网路则很难处理此类数据。由此便催生出了循环神经网络RNN。

循环神经网络

循环神经网络也叫递归神经网路,RNN将状态在自身网路中循环传递,可以接受时间序列结构输入。

先来看看RNN的主要类型

  

  • 一对一:固定的输入到
  • 一对多:固定的输入到序列输出,如图像的文字描述
  • 多对一:序列输入到输出,如情感分析,文本分类正面负面情绪
  • 异步多对多:序列输入到序列的输出,如机器翻译,也称之为编解码网络
  • 同步多对多 :同步序列输入到同步输出,如文本生成,视频每一帧的分类,也称之为序列生成

 基础循环神经网络的介绍

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值