- 博客(18)
- 收藏
- 关注
原创 精读:《You Only Learn One Query: Learning Unified Human Query for Single-Stage Multi-person Multi-task》
本文提出了一种名为HQNet的单阶段、多任务、以人为中心的统一感知框架(HCP),通过学习的"Human Query"表示来同时处理多人检测、分割、姿态估计和属性识别等任务。针对现有数据集不足的问题,作者构建了COCO-UniHuman基准数据集。实验表明,HQNet不仅在多任务HCP模型中表现最优,还能与单任务专用模型相媲美,且Human Query展现出良好的泛化能力。代码和数据已开源。
2025-09-05 11:42:42
816
原创 精读:《VideoMAE V2: Scaling Video Masked Autoencoders with Dual Masking》
发表于NeurIPS 2023的《VideoMAE V2》。它旨在解决因计算成本高昂而难以构建大规模视频基础模型的挑战。提出了创新的“双重掩码”策略,在对编码器进行高比例掩码的同时,也对解码器进行部分掩码,极大地提升了预训练的计算和内存效率。基于此,作者成功将模型扩展至首个十亿参数级别(ViT-g),并结合百万级混合预训练数据集和渐进式训练范式,在行为分类、时空检测等多个主流视频任务上刷新了SOTA记录。
2025-09-02 15:49:18
1100
原创 精读:《BoostTrack: boosting the similarity measure and detection confidence for improved multiple obje》
精读:《BoostTrack: boosting the similarity measure and detection confidence for improved multiple obje》
2025-08-22 16:56:59
866
原创 精读:《DEEP OC-SORT: MULTI-PEDESTRIAN TRACKING BY ADAPTIVE RE-IDENTIFICATION》
这句话首先点明了论文研究的大背景。多目标跟踪(MOT)领域中,一个核心任务是如何将不同帧中的同一个物体关联起来(association)。传统上,这依赖于对物体运动的预测。作者指出,随着近年来物体检测器(如YOLO、Faster R-CNN等)变得越来越强大和精准,单纯依赖运动信息进行关联的跟踪方法又重新变得重要和有效。这为后续提出在该基础上进行改进奠定了基调。这句话指出了当前研究领域的空白和痛点。虽然基于运动的方法很有效,但它们很少能很好地融入物体的“外观信息”(比如一个人的穿着颜色、体型等)。
2025-08-11 16:08:26
791
原创 精读:《Observation-Centric SORT: Rethinking SORT for Robust Multi-Object Tracking》
《以观测为中心的SORT:重新思考鲁棒多目标跟踪》,介绍了一种改进的多目标跟踪方法,尤其适用于存在遮挡和非线性运动的场景。该研究由卡内基梅隆大学、上海人工智能实验室和英伟达的研究人员合作完成。
2025-07-29 17:47:22
1291
原创 关于“高帧率放大了模型对位置噪声的敏感性”的理解
通常我们认为高帧率是好事,但作者指出,高帧率反而放大了模型对位置噪声的敏感性。因为在高帧率下,物体在两帧之间的实际位移非常小(可能只有几个像素)。此时,检测器带来的位置噪声(即使只有1-2个像素)就可能与真实位移处于同一量级。这导致通过 (当前位置 - 上一帧位置) / 时间 计算出的速度估计值会产生剧烈的、不稳定的波动。并且,这个不稳定的速度噪声会通过模型的预测过程,进一步累积到下一帧的位置估计中,形成恶性循环。
2025-07-29 14:42:00
426
原创 精读:《StrongSORT: Make DeepSORT Great Again》
还在为各种多目标跟踪(MOT)方法难以公平比较而烦恼吗?一篇名为《StrongSORT: Make DeepSORT Great Again》的重磅论文给出了答案。
2025-07-24 14:10:28
1366
原创 精读:《BPJDet: Extended Object Representation for Generic Body-Part Joint Detection》
模型能检测到人和手,却不知道哪只手属于哪个人?这个看似简单却长期存在的痛点,正是多篇顶会论文致力解决的难题。今天,我们将一起精读一篇发表于中科院一区顶刊 IEEE TPAMI 的重磅论文——《BPJDet: Extended Object Representation for Generic Body-Part Joint Detection》。本文将带你深入剖析BPJDet如何通过一个巧妙的“扩展对象表示”思想,将“检测”与“关联”两大任务融为一体,实现端到端的精准匹配。
2025-07-19 20:15:54
815
原创 《精读BoT-SORT: Robust Associations Multi--Pedestrian Tracking》
继SORT、DeepSORT和ByteTrack等前辈之后,一个名为BoT-SORT的强大身影登上了历史舞台,并迅速在各大权威排行榜上独占鳌头。
2025-07-18 16:10:34
1250
原创 超越DeepSORT与ByteTrack:多目标跟踪的“集大成者”BoT-SORT深度解析
在计算机视觉的世界里,多目标跟踪(MOT)一直是一个充满挑战又极具魅力的江湖。无数算法在此一较高下,都希望能精准、稳定地“跟住”视频中的每一个目标。
2025-07-18 14:30:20
1159
原创 ByteTrack: Multi-Object Tracking by Associating Every Detection Box
精读:ByteTrack: Multi-Object Tracking by Associating Every Detection Box
2025-07-17 14:23:54
651
原创 DeepSORT:《Simple Online and Realtime Tracking with a Deep Association Metric》
论文精读DeepSORT:《Simple Online and Realtime Tracking with a Deep Association Metric》
2025-07-16 15:22:17
914
原创 轨迹生命周期管理 (Tracklet Lifetime Management) 机制
除了我们已经深入探讨的 “卡尔曼滤波做预测” 和 “门控匈牙利算法做匹配” 这两大支柱外,要完整地理解 SORT 的工作流程,您还需要掌握以下三个关键的“流程管理”环节。
2025-07-16 11:18:58
445
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人