数据结构第5章:树和二叉树完全指南(自整理详细图文笔记)

名人说:莫道桑榆晚,为霞尚满天。——刘禹锡(刘梦得,诗豪)
原创笔记:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊)
上一篇《数据结构第4章 数组和广义表》

zero:思维导图

在这里插入图片描述

一、树的基本概念

1. 什么是树?

想象一下家族族谱或者公司的组织架构图,它们都是典型的树结构。在计算机中,(Tree)是由结点(Node)和(Edge)组成的层次型数据结构。

2. 树的基本术语

让我们通过一个直观的例子来理解这些术语:

在这里插入图片描述

  • 根结点:树的顶端,没有父结点的结点(就像族谱中的祖先)
  • 父结点(双亲结点):上一层的结点
  • 子结点(孩子结点):下一层的结点
  • 兄弟结点:同一个父结点的子结点
  • 叶子结点:没有子结点的结点(度为0)
  • 分支结点:有子结点的结点(度大于0)
  • 树的高度/深度:从根到叶子的最长路径上的结点数
  • 路径长度:路径上边的个数

3. 树的存储结构

顺序存储 - 双亲表示法

在这里插入图片描述

这种方法用数组存储,每个结点保存数据父结点的下标

typedef struct {
    char data;      // 结点数据
    int parent;     // 父结点下标,根结点为-1
} PTNode;

typedef struct {
    PTNode nodes[MAXSIZE];
    int nodeCount;  // 结点数量
} PTree;
链式存储 - 孩子兄弟表示法

在这里插入图片描述

采用"左孩子右兄弟"的策略,每个结点包含:

  • 数据域
  • 指向第一个孩子的指针
  • 指向右兄弟的指针
typedef struct TreeNode {
    char data;
    struct TreeNode* firstChild;  // 第一个孩子
    struct TreeNode* nextSibling; // 右兄弟
} TreeNode;

二、二叉树详解

1. 二叉树的定义与特点

二叉树(Binary Tree)是每个结点最多有两个子结点的树结构,具有以下特点:

  • 每个结点的度不超过2(最多2个孩子)

  • 子树有左右之分,顺序不能颠倒

  • 即使只有一个子结点,也要明确是左孩子还是右孩子

    A.b为a的左子树

    在这里插入图片描述
    B.c为a的右子树
    在这里插入图片描述

2. 特殊的二叉树类型

在这里插入图片描述

满二叉树

高度为h,含有 2^h - 1 个结点的二叉树。特点是每一层都"满员"。

在这里插入图片描述

完全二叉树

除了最后一层,其他层都是满的,且最后一层的结点都靠左排列

在这里插入图片描述

反例:

在这里插入图片描述

二叉排序树(BST)

满足"左 < 根 < 右"性质的二叉树,支持高效的查找操作。

在这里插入图片描述
在这里插入图片描述

平衡二叉树(AVL树)

任意结点的左右子树高度差不超过1的二叉排序树。

在这里插入图片描述

3. 二叉树的重要性质

  • 性质1:叶结点数 = 度为2的结点数 + 1 即: n 0 = n 2 + 1 n_0 = n_2 +1 n0=n2+1
  • 性质2:第k层最多有 2^(k-1) 个结点
  • 性质3:高度为h的二叉树最多有 2^h - 1 个结点
  • 性质4:n个结点的完全二叉树高度为 ⌊log₂n⌋ + 1

4. 二叉树的存储结构

顺序存储

使用数组,下标之间有规律:

  • 结点i的左孩子:2i
  • 结点i的右孩子:2i + 1
  • 结点i的父结点:⌊i/2⌋

a.完全二叉树的顺序存储

在这里插入图片描述

b.非完全二叉树(一般二叉树)的顺序存储

在这里插入图片描述
可以看出非完全二叉树会浪费很多存储单元,不适合进行顺序存储

链式存储(最常用)
typedef struct BiTNode {
    char data;                  // 数据域
    struct BiTNode* lchild;     // 左孩子指针
    struct BiTNode* rchild;     // 右孩子指针
} BiTNode, *BiTree;

在这里插入图片描述

5. 二叉树的遍历

二叉树遍历是指按照某种规则访问每个结点有且仅有一次

在这里插入图片描述

先序遍历(根-左-右)
void PreOrder(BiTree T) {
    if (T) {
        visit(T);           // 访问根结点
        PreOrder(T->lchild); // 遍历左子树
        PreOrder(T->rchild); // 遍历右子树
    }
}
中序遍历(左-根-右)
void InOrder(BiTree T) {
    if (T) {
        InOrder(T->lchild);  // 遍历左子树
        visit(T);            // 访问根结点
        InOrder(T->rchild);  // 遍历右子树
    }
}
后序遍历(左-右-根)
void PostOrder(BiTree T) {
    if (T) {
        PostOrder(T->lchild); // 遍历左子树
        PostOrder(T->rchild); // 遍历右子树
        visit(T);             // 访问根结点
    }
}
层序遍历(使用队列)
void LevelOrder(BiTree T) {
    Queue Q;
    InitQueue(&Q);
    if (T) EnQueue(&Q, T);
    
    while (!IsEmpty(Q)) {
        DeQueue(&Q, &T);
        visit(T);
        if (T->lchild) EnQueue(&Q, T->lchild);
        if (T->rchild) EnQueue(&Q, T->rchild);
    }
}

6. 线索二叉树

线索二叉树是利用空闲指针域存储前驱和后继信息的特殊二叉树。

typedef struct ThreadNode {
    char data;
    struct ThreadNode* lchild, *rchild;
    int ltag, rtag;  // 0表示指向孩子,1表示指向线索
} ThreadNode, *ThreadTree;

优点:可以快速找到前驱和后继结点,提高遍历效率
缺点:插入删除操作变复杂

三、树、森林与二叉树的转换

1. 树转二叉树

口诀:“加线、抹线、旋转”

  1. 加线:兄弟结点间连虚线
  2. 抹线:只保留每个结点与最左孩子的连线
  3. 旋转:虚线向右下方旋转45°

在这里插入图片描述

2. 森林转二叉树

  1. 先将森林中每棵树转换为二叉树
  2. 将后面的二叉树作为前面二叉树根结点的右子树

在这里插入图片描述

3. 遍历关系

  • 树的先根遍历二叉树的先序遍历
  • 树的后根遍历二叉树的中序遍历
  • 森林的先序遍历二叉树的先序遍历

在这里插入图片描述

四、树和二叉树的应用

1. 哈夫曼树与哈夫曼编码

什么是哈夫曼树?

哈夫曼树带权路径长度最短的二叉树,广泛应用于数据压缩。

在这里插入图片描述

关键概念

  • 带权路径长度 = 路径长度 × 结点权值
  • 树的带权路径长度 = 所有叶结点的带权路径长度之和
哈夫曼算法构造步骤
  1. 将所有结点放入优先队列(按权值排序)
  2. 每次取出两个权值最小的结点
  3. 创建新结点作为它们的父结点,权值为两者之和
  4. 将新结点放回队列
  5. 重复直到只剩一个结点(根结点)
哈夫曼编码
  • 左分支标0,右分支标1(或相反)
  • 从根到叶结点的路径就是该字符的编码
  • 保证前缀编码性质:任何编码都不是其他编码的前缀

在这里插入图片描述

特点

  • 频率高的字符编码短
  • 频率低的字符编码长
  • 平均编码长度最短

2. 并查集

并查集是处理不相交集合的树型数据结构。

核心操作

  • Find(x):查找x属于哪个集合
  • Union(x, y):合并x和y所在的集合
// 查找操作(带路径压缩)
int Find(int x) {
    if (parent[x] != x) {
        parent[x] = Find(parent[x]);  // 路径压缩
    }
    return parent[x];
}

// 合并操作
void Union(int x, int y) {
    int rootX = Find(x);
    int rootY = Find(y);
    if (rootX != rootY) {
        parent[rootX] = rootY;
    }
}

五、实战编程与常见问题

1. 经典算法实现

求二叉树的高度
// 递归求二叉树高度
int TreeHeight(BiTree T) {
    if (T == NULL) return 0;
    
    int leftHeight = TreeHeight(T->lchild);
    int rightHeight = TreeHeight(T->rchild);
    
    return (leftHeight > rightHeight ? leftHeight : rightHeight) + 1;
}
统计二叉树结点个数
// 递归统计结点数
int CountNodes(BiTree T) {
    if (T == NULL) return 0;
    return CountNodes(T->lchild) + CountNodes(T->rchild) + 1;
}
判断是否为完全二叉树
bool IsComplete(BiTree T) {
    if (T == NULL) return true;
    
    Queue Q;
    InitQueue(&Q);
    EnQueue(&Q, T);
    bool flag = false;  // 标记是否遇到空结点
    
    while (!IsEmpty(Q)) {
        BiTree current;
        DeQueue(&Q, &current);
        
        if (current == NULL) {
            flag = true;
        } else {
            if (flag) return false;  // 遇到空结点后又遇到非空结点
            EnQueue(&Q, current->lchild);
            EnQueue(&Q, current->rchild);
        }
    }
    return true;
}

2. 面试高频题目

题目1:二叉树的镜像

问题:翻转一棵二叉树(每个结点的左右子树交换)

BiTree MirrorTree(BiTree T) {
    if (T == NULL) return NULL;
    
    // 交换左右子树
    BiTree temp = T->lchild;
    T->lchild = T->rchild;
    T->rchild = temp;
    
    // 递归处理子树
    MirrorTree(T->lchild);
    MirrorTree(T->rchild);
    
    return T;
}
题目2:二叉树的最大路径和

问题:给定一个二叉树,找到任意一条路径的最大数字和

int maxSum = INT_MIN;

int MaxPathSumHelper(BiTree T) {
    if (T == NULL) return 0;
    
    // 递归计算左右子树的最大贡献值
    int left = max(0, MaxPathSumHelper(T->lchild));
    int right = max(0, MaxPathSumHelper(T->rchild));
    
    // 当前路径的最大值
    int currentMax = T->data + left + right;
    maxSum = max(maxSum, currentMax);
    
    // 返回以当前结点为根的最大路径和
    return T->data + max(left, right);
}
题目3:验证二叉搜索树
bool IsValidBST(BiTree T, int minVal, int maxVal) {
    if (T == NULL) return true;
    
    if (T->data <= minVal || T->data >= maxVal) {
        return false;
    }
    
    return IsValidBST(T->lchild, minVal, T->data) && 
           IsValidBST(T->rchild, T->data, maxVal);
}

// 调用入口
bool ValidateBST(BiTree T) {
    return IsValidBST(T, INT_MIN, INT_MAX);
}

3. 性能优化技巧

非递归遍历(避免栈溢出)
// 非递归中序遍历
void InOrderNonRecursive(BiTree T) {
    Stack S;
    InitStack(&S);
    BiTree current = T;
    
    while (current != NULL || !IsEmpty(S)) {
        // 一直向左走到底
        while (current != NULL) {
            Push(&S, current);
            current = current->lchild;
        }
        
        // 弹出并访问结点
        Pop(&S, &current);
        visit(current);
        
        // 转向右子树
        current = current->rchild;
    }
}
层序遍历的变种(按层输出)
void PrintByLevel(BiTree T) {
    if (T == NULL) return;
    
    Queue Q;
    InitQueue(&Q);
    EnQueue(&Q, T);
    
    while (!IsEmpty(Q)) {
        int levelSize = QueueSize(&Q);
        
        // 处理当前层的所有结点
        for (int i = 0; i < levelSize; i++) {
            BiTree current;
            DeQueue(&Q, &current);
            printf("%d ", current->data);
            
            if (current->lchild) EnQueue(&Q, current->lchild);
            if (current->rchild) EnQueue(&Q, current->rchild);
        }
        printf("\n");  // 换行表示层结束
    }
}

4. 实际应用案例

文件系统目录树
typedef struct FileNode {
    char name[256];
    bool isDirectory;
    struct FileNode* firstChild;
    struct FileNode* nextSibling;
    struct FileNode* parent;
} FileNode;

// 添加子文件/目录
void AddChild(FileNode* parent, FileNode* child) {
    child->parent = parent;
    child->nextSibling = parent->firstChild;
    parent->firstChild = child;
}

// 遍历目录(类似树的先根遍历)
void ListDirectory(FileNode* root, int depth) {
    if (root == NULL) return;
    
    // 打印缩进
    for (int i = 0; i < depth; i++) printf("  ");
    printf("%s%s\n", root->name, root->isDirectory ? "/" : "");
    
    // 递归遍历子目录
    FileNode* child = root->firstChild;
    while (child != NULL) {
        ListDirectory(child, depth + 1);
        child = child->nextSibling;
    }
}

总结

树和二叉树是数据结构中的重要概念,它们以层次化的方式组织数据,具有以下特点:

  1. 树结构模拟了现实世界的层次关系,直观易懂
  2. 二叉树是最重要的树类型,支持多种高效的操作
  3. 遍历算法是操作树的基础,四种遍历方式各有用途
  4. 转换技巧:"左孩子右兄弟"是树与二叉树转换的核心
  5. 实际应用广泛:文件系统、表达式求值、数据压缩、数据库索引等

通过本章的学习,我们不仅掌握了树的理论知识,还学会了实际编程技巧。树结构的思想将伴随我们整个编程生涯,从简单的文件管理到复杂的算法设计,都离不开树的概念。

在后续的学习中,我们还会遇到更多基于树的高级数据结构,如堆、B树、红黑树等。掌握好基础的树和二叉树知识,将为学习这些高级结构打下坚实的基础。

📝 学习小贴士树结构无处不在!下次看到文件夹、组织架构图、族谱时,不妨想想它们的树结构特点,这样能帮助你更好地理解和应用树的概念。

Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder)
点赞加关注,收藏不迷路!本篇文章对你有帮助的话,还请多多点赞支持!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Code_流苏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值