2(4) 二分法求函数的零点 (25 分)

这篇博客介绍了如何利用二分法来寻找函数f(x)在给定区间[1.5, 2.4]内唯一根的方法。通过判断函数值与0的相对大小,不断缩小区间直至满足精度要求。示例中给出了具体的函数f(x)=x^5 - 15x^4 + 85x^3 - 225x^2 + 274x - 121,并实现了相应的C++代码片段来演示实现过程。

有函数:在这里插入图片描述
已知f(1.5)>0,f(2.4)<0 且方程f(x)=0 在区间[1.5,2.4] 有且只有一个根,请用二分法求出该根。 提示:判断函数是否为0,使用表达式 fabs(f(x)) < 1e-7
输入格式:
无。

输出格式:x
该方程在区间[1.5,2.4]中的根。要求四舍五入到小数点后6位。。

输入样例:

结尾无空行
输出样例:

结尾无空行
注释:在math.h里面定义的pow()函数。调用方法为pow(底数,指数); 底数、指数、返回值都是double型的。如计算 9 的3/4次方:y = pow ( 9.0 , 3/4 );
且用二分法

#include<iostream>
#include<cmath>
#include<iomanip>
using namespace std;
double Math_re(double x)
{
    return pow(x, 5) - 15*pow(x, 4) + 85*pow(x, 3) - 225*pow(x, 2) + 274*x -121;
}
double Find(double a, double b)
{
    double x = (a+b)/2.0;
    double res = Math_re(x);
    if(fabs(res)<1e-7)
    {
        printf("%.6f",x);
        return 0;
    }

    if(res>0)
        Find(x,b);
    if(res<0)
        Find(a,x);
}
int main()
{
    double re=Find(1.5, 2.4);
    //cout<<fixed<<setprecision(6)<<re<<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值