
Pytorch
文章平均质量分 58
根本学不会的Kkkkk
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
刘二大人《Pytorch深度学习实践》第十一讲卷积神经网络(高级篇)
当一个卷积层输入了很多feature maps的时候,这个时候进行卷积运算计算量会非常大,如果先对输入进行降维操作,feature maps减少之后再进行卷积运算,运算量会大幅减少。传统的卷积层的输入数据只和一种尺寸的卷积核进行运算,而Inception-v1结构是Network in Network(NIN),就是先进行一次普通的卷积运算(比如5。1的卷积操作可以理解为feature maps个神经元都进行了一个全连接运算。(2)使用1*1的卷积核可以对模型进行降维,跳连结构解决了梯度消失的问题。原创 2023-04-14 10:12:45 · 777 阅读 · 1 评论 -
刘二大人《Pytorch深度学习实践》第十讲卷积神经网络(基础篇)
全连接的网络将图片的的本身二维空间结构进行了破坏,而这些空间结构是有用的,因此,要定义新的操作图像的计算节点,因此引入了卷积神经网络,能够尊重图像的空间结构,他的组成为:卷积层、池化层和归一化处理。3. 如果图片的分辨率很大的话,每一将过滤器移动一个像素,那么就需要很多次才能把图像收缩,因此引入了超参数Stride,它是。2. 对于每一次的卷积,可以发现图片的W和H都变小了,为了解决特征图收缩的问题,我们。1.过滤器的通道数和输入的通道数相同,输出的通道数和过滤器的数量相同。作为该区域池化后的值。原创 2023-04-13 16:53:37 · 752 阅读 · 0 评论 -
刘二大人《Pytorch深度学习实践》第九讲多分类问题
item()的作用是取出单元素张量的元素值并返回该值,保持该元素类型不变。但是这种情况下出现一个问题,每个sigmoid的输出都是独立的,当一个类别的输出概率较高时,其他类别的概率仍然会高,也就是说在输出了1的概率后,2输出的概率不会因为1的出现而受影响,这点说明了所有输出的概率值之和大于1。说明:dim=1,指定列,也就是行不变,列之间的比较,所以原来的a有三行,最后argmax()出来的应该也是三个值,第一行的时候,同一列之间比较,最大值是0.8338,索引是0,同理,第二行,最大值的索引是1……原创 2023-04-13 13:14:18 · 727 阅读 · 1 评论 -
刘二大人《Pytorch深度学习实践》第八讲加载数据集
3、因为数据集分成了多个mini-batch,有多少份mini-batch就有多少个Iteration,每进行一次mini-batch的前向和后向传播,就会进行一次权重参数的更新,在一个Epoch中,有多少个Iteration,就更新了多少次权重参数。2、在深度学习训练中,要给整个数据集分成多份,即mini-batch,每个mini-batch所包含的样本的数量叫做Batch-Size。1、DataSet 是抽象类,不能实例化对象,需要自己定义类继承该抽象类并实现其中的方法。主要用来返回数据集的个数。原创 2023-04-12 16:55:03 · 804 阅读 · 0 评论 -
刘二大人《Pytorch深度学习实践》第七讲处理多维度特征的输入
【代码】刘二大人《Pytorch深度学习实践》第七讲处理多维度特征的输入。原创 2023-04-12 15:36:24 · 328 阅读 · 0 评论 -
刘二大人《Pytorch深度学习实践》第六讲逻辑斯蒂回归
由于线性回归其预测值为连续变量,其预测值在整个实数域中。而对于预测变量y为离散值时候,可以用逻辑回归算法(Logistic Regression)逻辑回归的本质是将线性回归进行一个变换,该模型的输出变量范围始终。2. y如果是1,则loss = -ylogy’,y‘是0-1之间,则logy’在负无穷到0之间,y‘如果等于1则损失函数是0,如果和y的值越来越不接近,loss的值就会越来越大,y等于0同理。1.y’是预测值,y是真实值,如果想让loss足够小,那么y’和y越接近越好。原创 2023-04-12 15:10:20 · 762 阅读 · 1 评论 -
刘二大人《Pytorch深度学习实践》第五讲用Pytorch实现线性回归
Pytorch实现神经网络的步骤。原创 2023-04-10 23:26:40 · 309 阅读 · 0 评论 -
刘二大人《Pytorch深度学习实践》第四讲反向传播
【代码】刘二大人《Pytorch深度学习实践》第四讲反向传播。原创 2023-04-10 22:18:03 · 370 阅读 · 1 评论 -
刘二大人《Pytorch深度学习实践》第三讲梯度下降算法
随机梯度下降法在神经网络中被证明是有效的。因此折中一下,将整个数据分成多个。原创 2023-04-10 22:13:38 · 309 阅读 · 0 评论 -
刘二大人《Pytorch深度学习实践》第二讲线性模型
Pytorch原创 2023-04-10 22:02:26 · 612 阅读 · 0 评论