
初等数论
林中的亮光
沉着冷静淡定
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
线性基重要性质
线性基三大性质: 原序列里面的任意一个数都可以由线性基里面的一些数异或得到。 线性基里面的任意一些数异或起来都不能得到00。 在保持性质一的前提下,数的个数是最少的。 考虑一个问题:我们假设数的最高范围是2的32次方,那么如果我们可以从中选出32个以上的数,是否一定可以保证异或和为0呢? 答案是肯定的:不妨这样理解,每一次插入,都有成功与不成功,如果成功,说明对某一位有贡献,如果不成功,说明线性基已经可以构成这个数,那么,最坏情况32次之后,就一定可以实现异或和为0的操作了。 可以去看看这题:N.原创 2022-04-05 16:57:20 · 4134 阅读 · 0 评论 -
矩阵乘法。
1.关键问题在于如何去建立关系矩阵,观察本题,可以发现n与m非常小,因此,可以 将整个矩阵压缩成 一行 (m*n + 1)列 num(i,j) = (i - 1) * m + j; 代表压缩后各坐标在这个行列式中的位置。 2.接着思考如何使用矩阵快速幂加快运算。 注意到最长长度为6,1 - 6 最小公倍数为 6,因此我们每个60秒可以理解为一个周期,那么将t拆成 , 用A 表示每个60秒内的关系矩阵,便可计算加快运算。 3. 对于60秒内的各个关系矩阵,我们可以初始创找一个对角矩阵...原创 2022-03-07 15:00:44 · 322 阅读 · 0 评论